Answer:
Step-by-step explanation:
volume of cone=1/3 πr²h
=1/3×π×5²×11
=275/3 ×3.14
≈287.33 in³
which of the rolling equations have exactly one solutions ?
ps: (click the picture to see answer choices)
Answer:
All have exactly one solution
Step-by-step explanation:
a) -13x + 12 = 13x - 13
+13x +13x
-------------------------------
12 = 26x - 13
+13 +13
-------------------
25 = 26x
----- ------
26 26
25/26 = x
b) 12x + 12 = 13x - 12
-12x -12x
-----------------------
12 = x - 12
+12 +12
-----------------
24 = x
c) 12x + 12 = 13x + 12
-12x -12x
-----------------------------
12 = x + 12
0 = x
d) -13x + 12 = 13x + 13
+13x +13x
-----------------------------
12 = 26x + 13
-13 -13
-----------------------
-1 = 26x
--- -----
26 26
-1/26 = x
the question is in the photo. it is asking for 2 answers
9514 1404 393
Answer:
2nd force: 99.91 lbresultant: 213.97 lbStep-by-step explanation:
In the parallelogram shown, angle B is the supplement of angle DAB:
∠B = 180° -77°37' = 102°23'
Angle ACB is the difference of angles 77°37' and 27°8', so is 50°29'.
Now, we know the angles and one side of triangle ABC. We can use the law of sines to solve for the other two sides.
BC/sin(A) = AB/sin(C)
AD = BC = AB·sin(A)/sin(C) = (169 lb)sin(27°8')/sin(50°29') ≈ 99.91 lb
AC = AB·sin(B)/sin(C) = (169 lb)sin(102°23')/sin(50°29') ≈ 213.97 lb
-36 = 6(2-8n) please
Answer:
n=1
Step-by-step explanation:
-36 = 6(2-8n)
-36=12-48n
-36-12=-48n
-48=-48n
n=1
In a survey of 938 U.S. adults, 235 say the phrase "you know" is the most annoying conversational phrase. Let p be the proportion of the population who respond yes. Use the given information to Construct a 90% confidence interval for p.
Answer:
CI 90% = ( 0.227 ; 0.273)
Step-by-step explanation:
Information from the survey:
sample size n = 938
number of people with yes answer x = 235
proportion of people p = 235/938
p = 0.25 then q = 1 - 0.25 q = 0.75
Confidence Interval 90 % .
CI 90% = ( p ± SE )
CI 90% = ( p ± z(c)*√(p*q)/n)
CI 90 % then significance level is α = 10 % α/2 = 5%
α/2 = 0.05 we find in z-table z (c) = 1.64
√(p*q)/n = √0.25*0.75/938
√(p*q)/n = √0.000199
√(p*q)/n = 0.014
CI 90% = ( p ± z(c)*√(p*q)/n)
CI 90% = ( 0.25 ± 1.64*0.014)
CI 90% = ( 0.25 ± 0.023 )
CI 90% = ( 0.227 ; 0.273)
find the composition of transformations that map ABCD to EHGF.
Reflect over the (y) -axis then translate
(x+?,y+?)
9514 1404 393
Answer:
(x, y) ⇒ (x +(-1), y +(-1))
Step-by-step explanation:
Reflection over the y-axis is the transformation ...
(x, y) ⇒ (-x, y)
After that reflection, the figure is translated left 1 and down 1. That transformation is ...
(x, y) ⇒ (x -1, y -1)
_____
Additional comment
The composition of the two transformations is ...
(x, y) ⇒( -x -1, y -1)
Answer: x-1, y-1
Step-by-step explanation:
In the triangle shown, AB = 2x + 9 and BC = 5x – 12. Find the value of x.
Answer:
x=7
Step-by-step explanation:
AB=BC[ because two sides of isosceles triangles are equal ]
or, 2x+9=5x-12
or,9+12=5x-2x
or,21=3x
or,x= 21/3
therefore, x=3
21. 13/4 x 42/9 =
O
A. 132/18
B. 64/9
O
C. 77/18
D. 41/6
Worth 2 points
A consumer advocate agency is concerned about reported failures of two brands of MP3 players, which we will label Brand A and Brand B. In a random sample of 197 Brand A players, 33 units failed within 1 year of purchase. Of the 290 Brand B players, 25 units were reported to have failed within the first year following purchase. The agency is interested in the difference between the population proportions, , for the two brands. Using the data from the two brands, what would be the standard error of the estimated difference, Dp = A – B, if it were believed that the two population proportions were, in fact, equal (i.e., )?
Answer:
The standard error of the estimated difference is of 0.0313.
Step-by-step explanation:
To solve this question, we need to understand the central limit theorem, and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Brand A:
33 out of 197, so:
[tex]p_A = \frac{33}{197} = 0.1675[/tex]
[tex]s_A = \sqrt{\frac{0.1675*0.8325}{197}} = 0.0266[/tex]
Brand B:
25 out of 290, so:
[tex]p_B = \frac{25}{290} = 0.0862[/tex]
[tex]s_B = \sqrt{\frac{0.0862*0.9138}{290}} = 0.0165[/tex]
What would be the standard error of the estimated difference?
[tex]s = \sqrt{s_A^2+s_B^2} = \sqrt{0.0266^2+0.0165^2} = 0.0313[/tex]
The standard error of the estimated difference is of 0.0313.
Which of the following choices is equivalent to the equation below?
5(2x−1) = 5(5x−14)
A 2x − 1 = 5x − 14
B 5(2x − 1) = 5x − 14
C 2x − 1 = 5
D None of these choices are correct.
Answer:
2x-1 = 5x-14
Step-by-step explanation:
5(2x−1) = 5(5x−14)
Divide each side by 5
5/5(2x−1) = 5/5(5x−14)
2x-1 = 5x-14
Answer:
A.
Step-by-step explanation:
5(2x−1) = 5(5x−14)
10x - 5 = 25x - 70
65 = 15x
x = 13/3.
Take Option A.
2x - 1 = 5x - 14
3x = 13
x = 13/3 so its this one.
B: 10x - 5 = 5x - 14
5x = -9
x = -9/5 so NOT B.
C. simplifies to x = 3. so NOT C.
PLEASE I NEED HELP RIGHT NOW
Select the graph that correctly translates ƒ(x) = |x| 4 units in the negative x-direction and 3 units in the positive y-direction.
answers are the pictures
Answer:
The third graph
Step-by-step explanation:
What the translation is saying is that for each value of f(x) = |x|, the graph is translated 4 units in the negative x direction and 3 units for the positive y direction. Another way to say this is that for each f(x), we can add (-4) (or subtract 4) to its x value and add 3 to its y value.
One way to find which graph works is to take a point, figure out where it should be, and work from there.
One example of this is (-1,1). If x=-1, |x| is 1, so in the original graph, our point is (-1, 1). In our translated graph, we need to subtract 4 from the x component (the first number, which is -1 in this case) and add 3 to the y component (the second number, or 1 in this case). Our new point comes to
(-1-4 , 1+3)
= (-5, 4)
Therefore, one point on the resulting graph is (-5, 4). We can look through each graph and see if it has the point.
Looking at each graph, it is clear that the graph in the bottom left, or the third graph, contains the point.
The equation of the translated function will be f(x) = |x + 4| + 3. Then the correct option is C.
What is an absolute function?The absolute function is also known as the mode function. The value of the absolute function is always positive.
The absolute function is given as
f(x) = | x – h | + k
The function is given below.
f(x) = |x|
Then the function is translated 4 units in the negative x-direction and 3 units in the positive y-direction. Then the vertex will be at (-4, 3). Then the equation of the function will be
f(x) = |x + 4| + 3
Then the graph is given below.
Then the correct option is C.
More about the absolute function link is given below.
https://brainly.com/question/10664936
#SPJ2
Can someone help
Me please?
9514 1404 393
Answer:
minimum: 2 at x=0maximum: 10 at x=10Step-by-step explanation:
When looking for extremes, one must consider both the turning points and the ends of the interval. Here, there is a relative minimum at x=7, and a relative maximum at x=3. However, the values at the ends of the interval are more extreme than these.
The absolute minimum on the interval is 2 at x=0.
The absolute maximum on the interval is 10 at x=10.
Simplify: −4(b+6)−2b(1−4b
Step-by-step explanation:
-4b-24-2b+8b2
8b2-6b-24=0
HELP ME PLEASE I NEED HELP
Answer:
1. 3-5
2. 5-3
3. 3-5
4. 5-3
Step-by-step explanation:
This is simple! Just get rid of the parenthesis for each of the expressions shown.
3 + (-5)
the plus sign is next to the negative which is in the parenthesis. Negative times positive is equal to negative. The expression then becomes
3 - 5
Now do the same for the rest!
For things like 3 and 4, you can just flip it like 3-5 and 5-3 because it will all equal the same :]
Hope this helps !!
-Ketifa
- Mean test score was 200 with a standard deviation of 40- Mean number of years of service was 20 years with a standard deviation of 2 years.In comparing the relative dispersion of the two distributions, what are the coefficients of variation
Answer:
The correct answer is "Test 20%, Service 10%".
Step-by-step explanation:
As we know,
The coefficient of variation (CV) is:
⇒ [tex]CV=\frac{Standard \ deviation}{Mean}\times 100[/tex]
Now,
CV of test will be:
= [tex]\frac{40}{200}\times 100[/tex]
= [tex]20[/tex] (%)
CV of service will be:
= [tex]\frac{2}{20}\times 100[/tex]
= [tex]10[/tex] (%)
a motercycle can travel 60 miles per gallon. approximently how many gallons of fuel will the motercycle need to travel 40 km
[1 mile = 1.6km]
a: 0.04
b: 0.08
c: 0.20
d: 0.42
Answer:
D. 0.42
Step-by-step explanation:
First, convert 40 km to miles by dividing it by 1.6:
40/1.6
= 25
Create a proportion where x is the number of gallons the motorcycle will need to travel 40 km (25 miles):
[tex]\frac{60}{1}[/tex] = [tex]\frac{25}{x}[/tex]
60x = 25
x = 0.4166
Round this to the nearest hundredth:
x = 0.42
So, to travel 40 km, the motorcycle will need 0.42 gallons of fuel.
The correct answer is D. 0.42
can someone help me pls
Answer:
D NO IS THE WRITE ANSWER .
Answer:
D)
Step-by-step explanation:
please help me đáp án của nó là gì help me thanks you very much
Show why (2×3×7)^4 = 2^4 × 3^4 × 7^4 show work
[tex] {a}^{m} \times {b}^{m} = ( {ab)}^{m} [/tex]
(2×3×7)⁴=(2×3)⁴×7⁴(2×3×7)⁴=(2×3×7)⁴RHS=LHSplease mark this answer as brainlist
The speed of the light is approximately 3x10^14 centimeters per second.how much will it take light to Tavel 9x10^14 centimeters
Answer:
3 seconds
Step-by-step explanation:
First, let's calculate the approximate speed of light.
3 · 10^14 = 3 · 100,000,000,000,000
= 300,000,000,000,000
Approximately, light travels 300,000,000,000,000 centimeters per second.
Now, let's simplify 9x10^14.
9 · 10^14 = 9 · 100,000,000,000,000
= 900,000,000,000,000
To find out how many seconds light takes to travel 900,000,000,000,000 centimeters, we have to divide this number by 300,000,000,000,000, the approximate speed of light.
900,000,000,000,000/300,000,000,000,000 = 3
Therefore, it will take 3 seconds for light to travel 900,000,000,000,000 centimeters.
It will take 3 seconds to cover the distance of 9×10¹⁴ cm.
What is scientific notation?We use the scientific notation of numbers to write very large numbers in compact form.
In the scientific form, we write a number in the form of base×10ⁿ.
Where 0 ≤ base < 10 and n can be any rational number.
Given the speed of light s approximately 3×10¹⁴ cm/sec.
∴ It will take (9×10¹⁴/3×10¹⁴) = 3 seconds.
We know that exponents are added when the same base is multiplied and exponents are subtracted when the same base or integral multiple of the same base is divided.
learn more about scientific notation here :
https://brainly.com/question/18073768
#SPJ2
Ugh I’m going insane trying to do this. Please help.
Answer:
y(x)=6^(x)-3
Step-by-step explanation:
Let the exponential function be y(x) = ab^(x) but since the graph is translated 3 units down, y(x) = ab^(x)-3. Now, y(0)=-2=a*b^(0)-3. a=1. The equation is nearly complete but we need b, we can find it by using the point y(1)=3. y(x)=b^(x) - 3. y(1)=3=b-3, b=6. The equation of the function is y(x)=6^(x)-3
Answer:
I agree with the first one
One angle of an isosceles triangle is 16 what are the other 2 angles
Answer:
other two angle will be
82
as 82+82+16 = 180'
please help me out asap:)
Based on the information, the triangles share two sides but have one different side. one included angle is bigger than the other.
This means that the triangle with side 2x-4 must be smaller than the triangle with the side 10.
Let first, find it minimum amount. A triangle side must be greater than zero so
[tex]2x - 4 > 0[/tex]
[tex]2x > 4[/tex]
[tex]x > 2[/tex]
The triangle side must be smaller than 10.
[tex]2x - 4 < 10[/tex]
[tex]2x < 14[/tex]
[tex]x < 7[/tex]
So x must be greater than 2 but must be smaller than 7.
What number increased by 30% is 34.5
Answer:
44.85
Step-by-step explanation:
There are two ways to do it, you can either multiply 0.3 by 34.5 and then add it to 34.5 to get 44.85, or you can add the 30% to 100% and get 1.3 which you multiply by 34.5 and that gets you 44.85
sample of 1800 computer chips revealed that 25% of the chips do not fail in the first 1000 hours of their use. The company's promotional literature claimed that 28% do not fail in the first 1000 hours of their use. Is there sufficient evidence at the 0.02 level to dispute the company's claim
Answer:
The p-value of the test is 0.0023 < 0.02, which means that there is sufficient evidence at the 0.02 level to dispute the company's claim.
Step-by-step explanation:
The company's promotional literature claimed that 28% do not fail in the first 1000 hours of their use.
At the null hypothesis, we test that at least 28% do not fail, that is:
[tex]H_0: p \geq 0.28[/tex]
At the alternative hypothesis, we test if the proportion is of less than 28%, that is:
[tex]H_1: p < 0.28[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.28 is tested at the null hypothesis:
This means that [tex]\mu = 0.28, \sigma = \sqrt{0.28*0.72}[/tex]
Sample of 1800 computer chips revealed that 25% of the chips do not fail in the first 1000 hours of their use.
This means that [tex]n = 1800, X = 0.25[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.25 - 0.28}{\frac{\sqrt{0.28*0.72}}{\sqrt{1800}}}[/tex]
[tex]z = -2.83[/tex]
P-value of the test and decision:
The p-value of the test is the probability of finding a sample proportion below 0.25, which is the p-value of Z = -2.83.
Looking at the z-table, z = -2.83 has a p-value of 0.0023.
The p-value of the test is 0.0023 < 0.02, which means that there is sufficient evidence at the 0.02 level to dispute the company's claim.
Use the confidence level and sample data to find a confidence interval for estimating the population μ. Round your answer to the same number of decimal places as the sample mean.
Test scores: n = 92, = 90.6, σ = 8.9; 99% confidence
Options:
A.) 88.2 < μ < 93.0
B.) 88.4 < μ < 92.8
C.) 89.1 < μ < 92.1
D.) 88.8 < μ < 92.4
Answer: Choice A.) 88.2 < μ < 93.0
=============================================================
Explanation:
We have this given info:
n = 92 = sample sizexbar = 90.6 = sample meansigma = 8.9 = population standard deviationC = 99% = confidence levelBecause n > 30 and because we know sigma, this allows us to use the Z distribution (aka standard normal distribution).
At 99% confidence, the z critical value is roughly z = 2.576; use a reference sheet, table, or calculator to determine this.
The lower bound of the confidence interval (L) is roughly
L = xbar - z*sigma/sqrt(n)
L = 90.6 - 2.576*8.9/sqrt(92)
L = 88.209757568781
L = 88.2
The upper bound (U) of this confidence interval is roughly
U = xbar + z*sigma/sqrt(n)
U = 90.6 + 2.576*8.9/sqrt(92)
U = 92.990242431219
U = 93.0
Therefore, the confidence interval in the format (L, U) is approximately (88.2, 93.0)
When converted to L < μ < U format, then we get approximately 88.2 < μ < 93.0 which shows that the final answer is choice A.
We're 99% confident that the population mean mu is somewhere between 88.2 and 93.0
Find the equation of the midline of the function y = 2 sin(1∕4x) – 3.
A) y = –3
B) y = 3
C) y = 2
D) y = 1∕4
Explanation:
The general sine equation is
y = A*sin(B(x-C)) + D
where the D variable directly determines the midline. In this case, D = -3, so that corresponds to a midline of y = -3
The sine curve oscillates going up and down, passing through this middle horizontal line infinitely many times. See the graph below.
Answer:
A) y = –3
Step-by-step explanation:I took the test
The population of a city increased from 23,400 to 27,800 between 2008 and 2012. Find the change of population per year if we assume the change was constant from 2008 to 2012.
Find the amount of the increase:
27800 - 23400 = 4,400
Find number of years: 2012 - 2008 = 4 years
Divide amount of change by number of years:
4,400 / 4 = 1,100 people per year.
Please I need help please!!!!
I need the answer ASAP…!!!!!!
If you know the answer please tell me
Answer:
x=−16/3 or x=2
Step-by-step explanation:
Step 1: Simplify both sides of the equation.
3x2+10x−8=24
Step 2: Subtract 24 from both sides.
3x2+10x−8−24=24−24
3x2+10x−32=0
Step 3: Factor left side of equation.
(3x+16)(x−2)=0
Step 4: Set factors equal to 0.
3x+16=0 or x−2=0
Which points are also part of this set of equivalent ratios? Select all that apply.
a. (3, 2)
b. (4, 2)
c. (4, 8)
d. (8, 4)
e. (12, 6)
Answer:
Option b, (4,2)
Option d, (8,4)
Option e, (12,6)
Answered by GAUTHMATH
Answer:
Option b, (4,2)
Option d, (8,4)
Option e, (12,6)
Step-by-step explanation:
the person above me is correct
Which shows the correct substitution of the values a, b, and c from the equation -2 = -x + x2 – 4 into the quadratic
formula?
Quadratic formula: x =
-bb2-4ac
2 a
Ox=
-(-1){V - 1)2 - 4(1)(-4)
2(1)
O x=-11/12-46- 1)( - 4)
2(-1)
O x= -13V (1)? - 4( - 1)(-2)
2(-1)
O x=-(-1)+7(-1)2 - 4(1)(-2)
2(1)
The values of a, b, c are obtained from the given equation, by equation
in the form in which it is equal to 0.
The correct substitution of the values a, b, and c from the equation -2 = -x + x² - 4 is the option;
[tex]\underline{x = \dfrac{-1 \pm \sqrt{1^2 - 4 \cdot (-1) \cdot (-2)} }{2 \cdot (-1)}}[/tex]Which is the method by which the values of a, b, and c are substituted?Given:
The quadratic formula is presented as follows;
[tex]x = \mathbf{ \dfrac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c} }{2 \cdot a}}[/tex]
The given equation is presented as follows;
-2 = -x + x² - 4
Which gives;
0 = -x + x² - 4 + 2 = -x + x² - 2
-x + x² - 2 = 0
Therefore, we have;
[tex]x = \mathbf{ \dfrac{-1 \pm \sqrt{1^2 - 4 \times (-1) \times (-2)} }{2 \times (-1)}}[/tex]The correct option is therefore;
[tex]x = \dfrac{-1 \pm \sqrt{1^2 - 4 \cdot (-1) \cdot (-2)} }{2 \cdot (-1)}[/tex]Learn more about the quadratic formula here:
https://brainly.com/question/1630251