Answer:
(A - B) - C = { 1 , 4 , 6 , 7 }
Step-by-step explanation:
A = { 1 , 2 , 3 , 4 , 5 }
B = { 4 , 5 , 6 , 7 }
A - B = { 1 , 2, 3 ,6 , 7 }
C = { 2 , 3 , 4 }
(A - B) - C = { 1 , 4 , 6 , 7 }
Find m angle QSRIf m angle TSQ=15x , m angle TSR=173^ , and m angle QSR=10x-2
[tex]{\color{red}{\huge{\underbrace{\overbrace{\mathfrak{\:\:\:\:\:\:\:꧁"Answer"꧂\:\:\: }}}}}}[/tex]
[tex]\small\color{blak}{{\underline{\bold{ Find \:a X } } } }[/tex]
[tex]\small\color{black}{{\underline{\bold{173°=15z+10x-2 } } } } \\ = 173 = 25x - 2 \\ = - 25x = - 2 - 173 \\ = - 25x - 175 \\ = \small\color{blue}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:\: x=7\:\:\:\: }}}}[/tex]
[tex]\small\color{blak}{{\underline{\bold{ Find\:a\:m<QSR } } } }[/tex]
[tex]\small\color{blak}{{\underline{\bold{ 10(7)-2 } } } }\\=70-2\\=\small\color{red}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:\: m<QSR=68°\:\:\:\: }}}}[/tex]
[tex]\Large\color{red}{{\underline{\mathfrak {{꧁"Carry\:on\: learning"꧂ }}}}}[/tex]
The measure of angle QSR is 68 degrees.
What is substitution?Substitution means putting numbers in place of letters to calculate the value of an expression.
According to the given question.
m ∠TSQ = 15x
m ∠TSR = 173 degrees
m ∠QSR = 10x -2
Since,
m ∠TSR = m ∠TSQ + ∠QSR
Substitute the value of m ∠TSR, m ∠TSQ and m ∠QSR in the above expression.
⇒ [tex]173 = 15x + 10x - 2[/tex]
⇒ [tex]173 = 25x - 2[/tex]
⇒ [tex]175 = 25x[/tex]
⇒ [tex]x = \frac{175}{25}[/tex]
⇒ [tex]x = 7[/tex]
Again, for finding the value of angle QSR substitute the value of x in 10x - 2.
Therefore,
m ∠QSR = 10(7) - 2
⇒ m ∠QSR = 70 - 2
⇒ m ∠QSR = 68 degrees
Hence, the measure of angle QSR is 68 degrees.
Fid out more information about substitution here:
brainly.com/question/27810586
#SPJ3
FREE
Circle O has a circumference of approximately 250 ft.
What is the approximate length of the diameter, d?
O 40 ft
O 80 ft
O 125 ft
O 250 ft
Save and Exit
Next
Submit
Mark this and return
Answer:
Step-by-step explanation:
circumference = πd ≅ 250 ft
d ≅ 250/π ≅80 ft
A researcher wishes to conduct a study of the color preferences of new car buyers. Suppose that 50% of this population prefers the color green. If 14 buyers are randomly selected, what is the probability that exactly 12 buyers would prefer green
Answer:
The probability that exactly 12 buyers would prefer green
=0.00555
Step-by-step explanation:
We are given that
p=50%=50/100=0.50
n=14
We have to find the probability that exactly 12 buyers would prefer green.
q=1-p
q=1-0.50=0.50
Using binomial distribution formula
[tex]P(X=x)=nC_r p^r q^{n-r}[/tex]
[tex]P(x=12)=14C_{12}(0.50)^{12}(0.50)^{14-12}[/tex]
[tex]P(x=12)=14C_{12}(0.50)^{12}(0.50)^2[/tex]
[tex]P(x=12)=14C_{12}(0.50)^{14}[/tex]
[tex]P(x=12)=\frac{14!}{12!2!}(0.50)^{14}[/tex]
[tex]P(x=12)=\frac{14\times 13\times 12!}{12!2\times 1}(0.50)^{14}[/tex]
[tex]P(x=12)=91\cdot (0.50)^{14}[/tex]
[tex]P(x=12)=0.00555[/tex]
Hence, the probability that exactly 12 buyers would prefer green
=0.00555
Let Y1 and Y2 denote the proportions of time (out of one workday) during which employees I and II, respectively, perform their assigned tasks. The joint relative frequency behavior of Y1 and Y2 is modeled by the density function.
f (y 1,y2)=y 1+y 2 o<=y 1<=1, 0<=y2<=1(0 elsewhere)
a. Find P (Y1< 1/2,y2>1/4)
b. Find P(Y 1+Y2<=1)
Are Y1 and Y2 independent?
(a) The region Y₁ < 1/2 and Y₂ > 1/4 corresponds to the rectangle,
{(y₁, y₂) : 0 ≤ y₁ < 1/2 and 1/4 < y₂ ≤ 1}
Integrate the joint density over this region:
[tex]P\left(Y_1<\dfrac12,Y_2>\dfrac14\right) = \displaystyle\int_0^{\frac12}\int_{\frac14}^1 (y_1+y_2)\,\mathrm dy_2\,\mathrm dy_1 = \boxed{\dfrac{21}{64}}[/tex]
(b) The line Y₁ + Y₂ = 1 cuts the support in half into a triangular region,
{(y₁, y₂) : 0 ≤ y₁ < 1 and 0 < y₂ ≤ 1 - y₁}
Integrate to get the probability:
[tex]P(Y_1+Y_2\le1) = \displaystyle\int_0^1\int_0^{1-y_1}(y_1+y_2)\,\mathrm dy_2\,\mathrm dy_1 = \boxed{\dfrac13}[/tex]
Y₁ and Y₂ are not independent because
P(Y₁ = y₁, Y₂ = y₂) ≠ P(Y₁ = y₁) P(Y₂ = y₂)
To see this, compute the marginal densities of Y₁ and Y₂.
[tex]P(Y_1=y_1) = \displaystyle\int_0^1 f(y_1,y_2)\,\mathrm dy_2 = \begin{cases}\frac{2y_1+1}2&\text{if }0\le y_1\le1\\0&\text{otherwise}\end{cases}[/tex]
[tex]P(Y_2=y_2) = \displaystyle\int_0^1 f(y_1,y_2)\,\mathrm dy_1 = \begin{cases}\frac{2y_2+1}2&\text{if }0\le y_2\le1\\0&\text{otherwise}\end{cases}[/tex]
[tex]\implies P(Y_1=y_1)P(Y_2=y_2) = \begin{cases}\frac{(2y_1+1)(2y_2_1)}4&\text{if }0\le y_1\le1,0\ley_2\le1\\0&\text{otherwise}\end{cases}[/tex]
but this clearly does not match the joint density.
Please help me to solve it
What are you trying to solve for?
[tex]824381 + 1654 = - 121[/tex]
For a popular Broadway music the theater box office sold 356 tickets at $80 a piece275 tickets at $60 a piece and 369 tickets at $ 45 a piece. How much money did the box office take in?
Answer:
Step-by-step explanation:
356 * 80 = 28 480
275 * 60 = 16 500
369 * 45 = 16 605
sum = $ 61 585
Help me or ill fail plz
Answer:
1,108 in²
Step-by-step explanation:
SA = (12×20) + (2×20×5 + 2×12×5) + (2×½×12×9)
+ (2×20×11)
= 240+320+108+440
= 1,108 in²
Expand 5(2x-1) please I need it for homework.
10x-5
Answer:
5(2x-1)
5*2x 5*-1
10x-5
Hey there!
5(2x - 1)
= 5(2x) + 5(-1)
= 10x - 5
Therefore, your answer should be: 5x - 5
Good luck on your assignment and enjoy your day!
~Amphitrite1040:)
What’s the answer for this
Answer:
3, 6, 11, 18, 27
Step-by-step explanation:
hope it helps
A tree cast a shadow of 30m long and a 2m stick casts one that is 3m long. As show in the below diagram how tall is the tree?
Answer:
20 mStep-by-step explanation:
We have similar triangles here.
BC║DE, AB║AD and AC║AE ⇒ ΔADE ~ ΔABCThe ratio of corresponding sides of similar triangles is same:
BC/DE = AC/AEBC / 2 = 30/3BC / 2 = 10BC = 2*10BC = 20 mTake the similar triangles,
→ ∆ADE ≈ ∆ABC
Now we can find,
The height of the tree in meters,
→ BC/DE = AC/AE
In this equation BC is the height of tree,
→ BC/2 = 30/3
→ BC/2 = 10
→ BC = 10 × 2
→ BC = 20
Hence, the height of the tree is 20 m.
Please help it’s a test and I can’t get logged out
Answer:
the anwer is B ( i mean second option)
And you can try it
you will find ;
[tex]y = \frac{x}{3} - 1[/tex]
HAVE A NİCE DAY
Step-by-step explanation:
GREETİNGS FROM TURKEY ツ
In the diagram below, POR is a diameter, <QPR is a°,<PRS is (4a+12)°. find the value of a
Answer:
22=4
Step-by-step explanation:
0977-=ytb
Which system of equations below has no solution
Answer:
Step-by-step explanation:
y= 4x + 5
y = 4x - 5
4x + 5 = 4x - 5
0 ≠ -10
no solution
Two competitive brothers, who work in two different industries, were comparing their salaries. Because there is a difference of 4 years in their respective work experience, they decided to compare, not their actual salaries, but to compare their salaries against their company averages to see who is doing better. The following gives the brothers salaries, companies mean, and standard deviation for each company
Brother Salary P sd
Tom 84000 75000 7000
Andy 70578 60000 8200
What is the 2-score of Andy's salary?
a. 1.89
b. 1.89
c. 1.29
d. 0-129
Answer:
c. 1.29
Step-by-step explanation:
Z-score:
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Andy 70578 60000 8200
This means that [tex]X = 70578, \mu = 60000, \sigma = 8200[/tex]
What is the z-score of Andy's salary?
This is Z, so:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{70578 - 60000}{8200}[/tex]
[tex]Z = 1.29[/tex]
So the correct answer is given by option c.
Please help meeee pleaseeee
Explanation:
Refer to the diagram below. There are n = 9 sides
S = 180(n-2)
S = 180(9-2)
S = 180(7)
S = 1260
This nonagon (9 sided polygon) has its interior angles add up to 1260 degrees.
Which value of n makes the equation true?
-1/2n=-8
Answer:
16?
Step-by-step explanation:
I'm not sure. I hope so.
1. What are the intercepts of the equation 2x+3/2y+3z=6
Answer:
x-intercept=3
y-intercept=4
z-intercept=2
Step-by-step explanation:
One-ninth of all sales at a local Subway are for cash. If cash sales for the week were $690, what were
Subway's total sales?
Select one:
O a. $22,600
O b. $2,611
O c. $6,210
O d. $2,610
e. None of these
Answer:
c. $6,210Step-by-step explanation:
Total sales = x
x*1/9 = 690x = 690*9x = 6210Correct choice is C
A venture capital company feels that the rate of return (X) on a proposed investment is approximately normally distributed with mean 30% and standard deviation 10%.
(a) Find the probability that the return will exceed 55%.
(b) Find the probability that the return will be less than 25%
(c) What is the expected value of the return?
(d) Find the 75th percentile of returns.
Answer:
a) 0.0062 = 0.62% probability that the return will exceed 55%.
b) 0.3085 = 30.85% probability that the return will be less than 25%
c) 30%.
d) The 75th percentile of returns is 36.75%.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean 30% and standard deviation 10%.
This means that [tex]\mu = 30, \sigma = 10[/tex]
(a) Find the probability that the return will exceed 55%.
This is 1 subtracted by the p-value of Z when X = 55. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{55 - 30}{10}[/tex]
[tex]Z = 2.5[/tex]
[tex]Z = 2.5[/tex] has a p-value of 0.9938
1 - 0.9938 = 0.0062
0.0062 = 0.62% probability that the return will exceed 55%.
(b) Find the probability that the return will be less than 25%
p-value of Z when X = 25. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{25 - 30}{10}[/tex]
[tex]Z = -0.5[/tex]
[tex]Z = -0.5[/tex] has a p-value of 0.3085
0.3085 = 30.85% probability that the return will be less than 25%.
(c) What is the expected value of the return?
The mean, that is, 30%.
(d) Find the 75th percentile of returns.
X when Z has a p-value of 0.75, so X when Z = 0.675.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.675 = \frac{X - 30}{10}[/tex]
[tex]X - 30 = 0.675*10[/tex]
[tex]X = 36.75[/tex]
The 75th percentile of returns is 36.75%.
HELP ME WITH THIS TO EARN BRAINLIEST!!!!!!
Answer:
Step-by-step explanation:
answer C looks good
Answer:
option c is answer
Step-by-step explanation:
as we can see r^2 =(d/2)^2
r^2=(6/2)^2
r^2=36/4=9
A=πr^2
A=9π
Suppose 49% of the doctors in America are dentists. If a random sample of size 689 is selected, what is the probability that the proportion of doctors who are dentists will be less than 47%
Answer:
[tex]P(<47\%)=0.1468[/tex]
Step-by-step explanation:
From the question we are told that:
Percentage of Dentist Doctors P(D)=49\%
Sample size n=689
Generally the equation for probability that the proportion of doctors who are dentists will be less than [tex]P(<47\%)[/tex] is mathematically given by
[tex]P(<47\%)=Z>(\frac{\=x-P(D)}{\sqrt{\frac{P(D)*1-P(D)}{n}}})[/tex]
[tex]P(<47\%)=Z>(\frac{0.47-0.49}{\sqrt{\frac{0.49*0.51}{689}}})[/tex]
[tex]P(<47\%)=Z>(1.05)[/tex]
Therefore from table
[tex]P(<47\%)=0.1468[/tex]
I'm not sure how to do this so I'm just asking for help.
Answer:
C
Step-by-step explanation:
In ∆DEG, we are given that all the three angles are congruent.
This means that all the three angles have equal measure. Thus,
<D = <E = <F
An equilateral triangle has equal angle measure. ∆DEF is an equilateral triangle.
Since the sum of a triangle is 180°, therefore, each angle in ∆DEF = 60°
m<D = 60°
The alternative hypothesis for a two-tailed test of a single population proportion might be?
A. Ha: P>0.4
B. Ha: P< 0.4
C. Ha: p~=0.4 (~means not equal to)
Answer:
tgis moght help
Step-by-step explanation:
https://opentextbc.ca/introbusinessstatopenstax/chapter/full-hypothesis-test-examples/
The formula for centripetal acceleration, a, is given by this formula, where v is the velocity of the object and r is the object’s distance from the center of the circular path:
A= V2/R
Solve the formula for r.
Answer:r=v^2/A
Step-by-step explanation: To solve for r means you have to isolate r on one side and put all the other terms on the other. To get r out from under the fraction, multiply both sides by r. This leaves:
A*r=v^2 so to isolate r, divide by A and get:
r=v^2/A.
Which of the following numbers are less than -0.65? Select all that apply.
-0.99
-4/5
-1/6
NEXT QUESTION
Answer -0.99 and -4/5
Step-by-step explanation:
-4/5 is equal to -0.8
Both -0.8 and 0.99 are to the left of -0.65, which is why they're less than 0.65.
1/6 = -0.16
Since -0.16 is to the right of -0.65 it is more than, not less
My reason:
As you go rightward, you increase the numbers by 1, which is why the numbers closer to the right are bigger than the numbers closer to the left.
(sorry for answering when it's already been two weeks lol. I felt the urge to answer-)
(3a+2b-4c)+(3a+2b-4c)
6
+
4
−
8
Step-by-step explanation:
Please mark me as brain list and please like my answer and rate also
Answer:
hope this will help you more
PLEASE may I get help, I'm so lost. It would mean a lot to me, please.
A grade school is putting on its Spring show. The theater seats 120 people. Because of the demand for tickets, the school has made the following specifications:
•The number of tickets for children will be twice as many as the number for adults.
•Full-price adult tickets will be $24; children's tickets will be $12
•At least 10 of the adult tickets will be made available to seniors aged 60 and over at 25% discount
•Total ticket sales must be at least $1,800
1)How many children's tickets will be sold? 2)How many adult tickets (full-priced and senior) will be sold?
3)How many of the adult tickets can be sold with the senior discount?
9514 1404 393
Answer:
804010 to 20, inclusiveStep-by-step explanation:
1. The various goals can be met without filling the theater. This fact means there is a range of possibilities for each of the answers. However, we take the wording, "because of the demand for tickets ..." to mean demand is high and the theater will be sold out.
Since two children's tickets will be sold for each adult ticket sold, the number of children's tickets is 2/3 of the total.
children's tickets = 2/3 × 120 = 80
__
2. The remaining 40 tickets will be adult tickets.
40 adult tickets will be sold.
__
3. The total revenue must be at least $1800. If we allow 'd' tickets to be sold at a discount, then we can find the limits on d using the inequality ...
24(40-d) +24(0.75)d +12(80) ≥ 1800 . . . . revenue from ticket sales
-6d ≥ -120 . . . . . . . . . . . . . . . . . . . collect terms, subtract 1920
d ≤ 20 . . . . . . . . . . divide by -6
At least 10 and at most 20 adult tickets can be sold with a discount.
("At least 10" comes from the problem requirements.)
What is the product of
(5^-4)(5^-3)
Answer:
option one is the correct answer
Answer:
1/625
Step-by-step explanation:
Find the volume of the figure. Express answers in terms of t, then round to the nearest whole number
Please help :)
Answer:
729π ft³
Step-by-step explanation:
Applying,
Volume of a cone
V = πr²h/3.............. Equation 1
Where r = radius of the base, h = height, π = pie
From the question,
Given: r = 9 ft, h = 27 ft
Substitite these values into equation 1
V = π(9²)(27)/3
V = 729π ft³
Hence the volume of the figure in terms of π is 729π ft³
You are dealt one card from a 52-card deck. Find the probability that you are dealt a king or a red card.
Answer:
7/13
Step-by-step explanation:
Half the deck is red so there are 26 reds.
There are 4 kings but we already counted two of these in the 26.
So there are 26+2 red or king cards total.
The probability of selecting a king or red is 28/52.
This can be reduced by dividing top and bottom by 4: 7/13.