In a certain cyclotron a proton moves in a circle of radius 0.530 m. The magnitude of the magnetic field is 1.30 T. (a) What is the oscillator frequency

Answers

Answer 1

Answer:

[tex]f=1.98\times 10^7\ Hz[/tex]

Explanation:

Given that,

The radius of circle, r = 0.53 m

The magnitude of the magnetic field, B = 1.3 T

We need to find the oscillator frequency. It is given by :

[tex]f=\dfrac{qB}{2\pi m}[/tex]

Put all the values,

[tex]f=\dfrac{1.6\times 10^{-19}\times 1.3}{2\pi \times 1.67\times 10^{-27}}\\\\f=1.98\times 10^7\ Hz[/tex]

So, the oscillator frequency is [tex]1.98\times 10^7\ Hz[/tex].


Related Questions

ACCORDING TO NEWTON'S THIRD LAW EVERY ACTION HAS EQUAL AND OPPOSITE REACTION BUT THEN WHY DON'T WE FLY WHEN WE FART??​

Answers

Answer:

Your fart only has so much force, not nearly enough to launch you into oblivion. Your fart and you still exert a force onto each other, so I guess, hypothetically, you could fly if you really, really try hard enough. Just make sure you don't try too hard and prolapse as a result :)

A rigid tank contains 10 lbm of air at 30 psia and 60 F. Find the volume of the tank in ft3. The tank is now heated until the pressure doubles. Find the heat transfer in Btu.

Answers

Answer:

Hence the amount of heat transfer is 918.75 Btu.

Explanation:

Now,

A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction

Answers

Answer:

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Explanation:

By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:

[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)

[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.

[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.

[tex]f_{s}[/tex] - Static friction force, in newtons.

[tex]f_{k}[/tex] - Kinetic friction force, in newtons.

[tex]m[/tex] - Mass, in kilograms.

[tex]g[/tex] - Gravitational constant, in meters per square second.

If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:

[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{s} = 0.273[/tex]

[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{k} = 0.181[/tex]

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Assume that I = E/(R + r), prove that 1/1 = R/E + r/E​

Answers

[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \frac{1}{I} = \frac{R}{E} + \frac{r}{E} }}}}}}[/tex]

[tex]\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]

[tex]I = \frac{ E}{ R + r} \\[/tex]

[tex] ➺\:\frac{I}{1} = \frac{E}{R + r} \\[/tex]

Since [tex]\frac{a}{b} = \frac{c}{d} [/tex] can be written as [tex]ad = bc[/tex], we have

[tex]➺ \: I \: (R + r) = E \times 1[/tex]

[tex]➺ \: \frac{1}{I} = \frac{R + r}{E} \\ [/tex]

[tex]➺ \: \frac{1}{I} = \frac{R}{E} + \frac{r}{E} \\ [/tex]

[tex]\boxed{ Hence\:proved. }[/tex]

[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35ヅ}}}}}[/tex]

A transverse sine wave with an amplitude of 2.50 mm and a wavelength of 1.80 m travels, from left to right along a long, horizontal stretched string with a speed of 36.0 m s. I Take the origin at the left end of the undisturbed string. At time t = 0 the left end of the string has its maximum upward displacement,
(a) What is the frequency of the wave?
(b) What is the angular frequency of the wave?
(c) What is the wave number of the wave?
(d) What is the function y(x,t) that describes the wave?
(e) What is y(t) for a particle at the left end of the string?
(f) What is y(t) for a particle 1.35 m to the right of the origin?
(g) What is the maximum magnitude of transverse velocity of any particle of the string?
(h) Find the transverse displacement of a particle 1.35 m to the right of the origin at time t = 0.0625 s.
(i) Find the transverse velocity of a particle 1.35 m to the right of the origin at time t = 0.0625 s.

Answers

Explanation:

Given that,

Amplitude, A = 2.5 nm

Wavelength,[tex]\lambda=1.8\ m[/tex]

The speed of the wave, v = 36 m/s

At time t = 0 the left end of the string has its maximum upward displacement.

(a) Let f is the frequency. So,

[tex]f=\dfrac{v}{\lambda}\\\\f=\dfrac{36}{1.8}\\\\f=20\ Hz[/tex]

(b) Angular frequency of the wave,

[tex]\omega=2\pi f\\\\=2\pi \times 20\\\\=125.7\ rad/s[/tex]

(c) The wave number of the wave[tex]=\dfrac{1}{\lambda}[/tex]

[tex]=\dfrac{1}{1.8}\\\\=0.56\ m^{-1}[/tex]

The angular velocity of an object is given by the following equation: ω(t)=(5rads3)t2\omega\left(t\right)=\left(5\frac{rad}{s^3}\right)t^2ω(t)=(5s3rad​)t2 What is the angular displacement of the object (in rad) between t = 2 s and t = 4 s?

Answers

Answer:

The angular displacement of the object between [tex]t = 2\,s[/tex] and [tex]t = 4\,s[/tex] is 20 radians.

Explanation:

The angular velocity of the object ([tex]\omega[/tex]), in radians per second, is given by the following expression:

[tex]\omega(t) = 5\cdot t^{2}[/tex] (1)

Where [tex]t[/tex] is the time, measured in seconds.

The change in the angular displacement ([tex]\Delta \theta[/tex]), in radians, is found by means of the following definite integral:

[tex]\Delta \theta = \int\limits^{4}_{2} {5\cdot t^{2}} \, dt[/tex] (2)

Then we proceed to integrate on the function in time:

[tex]\Delta \theta = \frac{5}{3}\cdot (4^{2}-2^{2})[/tex]

[tex]\Delta \theta = 20\,rad[/tex]

The angular displacement of the object between [tex]t = 2\,s[/tex] and [tex]t = 4\,s[/tex] is 20 radians.

Define relative density.​

Answers

Relative density is the ratio of the density of a substance to the density of a given material.

Three spheres (water, iron and ice) of the exact same volume are submerged in a tub of water. After the spheres are lined up, they are released. The spheres are made of plastic with the same density as water, ice, and iron.

Required:
a. Compare the weights of the three spheres.
b. Compare the buoyant forces on the three spheres.
c. What direction does the net force push on each of the spheres?
d. What happens to each sphere after it is released?

Answers

Answer:

(a) Iron > plastic > ice

(b) Same on all

(c) Iron downwards, plastic net force zero, ice upwards.

(d) Iron sphere sinks, plastic sphere is in equilibrium and ice sphere will floats.

Explanation:

Three spheres have same volume , plastic, ice and iron.

(a) The weight is given by

Weight = mass x gravity = volume x density x gravity

As the density of iron is maximum and the density of ice is least so the order of the weight is

Weight of iron > weight of plastic > weight of ice

(b) Buoyant force is given by

Buoyant force = Volume immersed x density of fluid x g

As they have same volume, density of fluid is same so the buoyant force is same on all the spheres.

(c) Net force is

F = weight - buoyant force  

So, the net force on the iron sphere is downwards

On plastic sphere is zero as the density of plastic sphere is same as water. On ice sphere it is upwards.

(d) Iron sphere sinks, plastic sphere is in equilibrium and ice sphere will floats.  

The relation of mass m, angular velocity o and radius of the circular path r of an object with the centripetal force is-
a. F = m²wr
b. F = mwr²
c. F = mw²r
d. F = mwr. ​

Answers

Answer:

Correct option not indicated

Explanation:

There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).

The formula to calculate a centripetal force (F) is

F = mv²/r

Where m is mass, v is velocity and r is radius

where

While the formula to calculate a centrifugal force (F) is

F = mω²r

where m is mass, ω is angular velocity and r is radius of the circular path.

From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.

NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.

Is the actual height the puck reached greater or less than your prediction? Offer a possible reason why this might be.

Answers

Answer:

Answer to the following question is as follows;

Explanation:

The puck's real altitude is lower than ones projection. That's because the mechanism may not be completely frictionless. Electricity is nevertheless wasted owing to particle interactions such as friction, which might explain why the present the results is lower than predicted.

find out the odd one and give reason (length, volume, time, mass​

Answers

Answer:

Time

Explanation:

The answer to the question is actually time. Time is not needed when you calculate the mass or volume of an object, a square, sphere, rectangle, or any other 3D shape. You must also calculate the length to know what numbers you will be multiplying by. The answer to the question is time.

What is the temperature of a system in thermal equilibrium with another system made up of water and steam at one atmosphere of pressure

Answers

Full Question:

What is the temperature of a system in thermal equilibrium with another system made up of water and steam at one atmosphere of pressure?

A) 0°F

B) 273 K

C) 0 K

D) 100°C

E) 273°C

Answer:

The correction Option is D) 100°C

Explanation:

The temperature above is referred to as the critical point.

it is the highest temperature and pressure at which water (which has three phases - liquid, solid, and gas) can exist in vapor/liquid equilibrium. If the temperature goes higher than 100 degrees celsius, it cannot remain is liquid form regardless of what the pressure is at that point.

There is also a condition under which water can exist in its three forms: that is  

- Ice (solid)

- Liquid (fluid)

- Gas (vapor)

That state is called triple point. The conditions necessary for that to occur are:

273.1600 K (0.0100 °C; 32.0180 °F)  as temperature and611.657 pascals (6.11657 mbar; 0.00603659 atm) as pressure

Cheers

Cheers

PLZ help asap :-/
............................ ​

Answers

Explanation:

[16]

[tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]

Here,

[tex]\rm { R_1} [/tex] = 2Ω[tex]\rm { R_2} [/tex] = 2Ω[tex]\rm { R_3} [/tex] = 2Ω[tex]\rm { R_4} [/tex] = 2Ω

We have to find the equivalent resistance of the circuit.

Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,

[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]

Reciprocating both sides,

[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]

Henceforth, Option A is correct.

_________________________________

[17]

[tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]

Here, we have to find the amount of flow of current in the circuit. By using ohm's law,

[tex] \longrightarrow [/tex] V = IR

[tex] \longrightarrow [/tex] 3 = I × 3.33

[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I

[tex] \longrightarrow [/tex] 0.90 Ampere = I

Henceforth, Option B is correct.

____________________________

[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]

a vessel with mass 10kg intially moving withthe velocicity 12m s along the x axis explodes into three exactly identical pieces Just after the explosion one piece moves with speed 10 m s along the x axis and asecond piece moves with speed 10 m s along the y axis What iis the magnitude of the component of velocity of the third piece along the y axiss

Answers

Answer:

Explanation:

Apply law of conservation of momentum along y-axis.

Initially there was no momentum along y-axis. So there will be nil momentum along y-axis again finally.

Let the mass of each piece after breaking be m .

Momentum of piece moving along positive y-axis

= m x 10 = 10m .

Let the component of velocity of third piece along y-axis be v .

Its momentum along the same direction = m v .

Total momentum along y -axis = 10 m + m v

According to law of conservation of momentum

10 m + mv = 0

v = - 10 m/s .

Component of velocity of the third piece along y-axis will be - 10 m/s .

In other words it will be along negative y-axis with speed of 10 m/s.

as the ball rises the vertical component of it's velocity_____. explain​

Answers

Answer:

Decreases

Explanation:

because its moving against gravitational attraction and at maximum height its velocity will be and it will decrease until it reaches maximum height and the start to increase again

can some one help me :< its music​

Answers

What do you want to know about the answer

A room has dimensions of 15 ft by 15 ft by 20 ft contains air with a density of 0.0724 pounds-mass per cubic feet. The weight of air in the room in pounds-force is

Answers

Answer:

the weight of the air in pound-force (lb-f) is 325.8 lbf

Explanation:

Given;

dimension of the room, = 15 ft by 15 ft by 20 ft

density of air in the room, ρ = 0.0724 lbm/ft³

The volume of air in the room is calculated as;

Volume = 15 ft x 15 ft x 20 ft = 4,500 ft³

The mass of the air is calculated as;

mass = density x volume

mass = 0.0724 lbm/ft³  x  4,500 ft³

mass = 325.8 lb-m

The weight of the air is calculated as;

Weight = mass x gravity

Weight = 325.8 lb-m x 32.174 ft/s²

Weight = 10482.29 lbm.ft/s²

The weight of the air in pound-force (lb-f) is calculated as;

1 lbf = 32.174 lbm.ft/s²

[tex]Weight =10,482.29\ lbm.ft/s^2\times \frac{1 \ lbf}{32.174 \ lbm.ft/s^2} \\\\Weight = 325.8 \ lbf[/tex]

Therefore, the weight of the air in pound-force (lb-f) is 325.8 lbf

which vector best represents the net force acting on the +3 C charge

Answers

Vector ' W ' best and there ya go

A pump lifts 400 kg of water per hour a height of 4.5 m .
Part A
What is the minimum necessary power output rating of the water pump in watts?
Express your answer using two significant figures.
Part B
What is the minimum necessary power output rating of the water pump in horsepower?
Express your answer using two significant figures.

Answers

Answer:

Power = Work / Time

P = 400 kg * 9.8 m/s * 4.5 m / 3600 sec = 4.9 J/s = 4.9 Watts

Also, 4.9 Watts / (746 Watts / Horsepower) = .0066 Hp

a microwave operates at a frequency of 2400 MHZ. the height of the oven cavity is 25 cm and the base measures 30 cm by 30 cm. assume that microwave energy is generated uniformly on the uipper surface. What is the power output of the oven

Answers

Complete question is;

A microwave oven operates at a frequency of 2400 MHz. The height of the oven cavity is 25 cm and the base measures 30 cm by 30 cm. Assume that microwave energy is generated uniformly on the upper surface of the cavity and propagates directly

downward toward the base. The base is lined with a material that completely absorbs microwave energy. The total microwave energy content of the cavity is 0.50 mJ.

Answer:

Power ≈ 600,000 W

Explanation:

We are given;

Frequency; f = 2400 Hz

height of the oven cavity; h = 25 cm = 0.25 m

base area; A = 30 cm by 30 cm = 0.3m × 0.3m = 0.09 m²

total microwave energy content of the cavity; E = 0.50 mJ = 0.5 × 10^(-3) J

We want to find the power output and we know that formula for power is;

P = workdone/time taken

Formula for time here is;

t = h/c

Where c is speed of light = 3 × 10^(8) m/s

Thus;

t = 0.25/(3 × 10^(8))

t = 8.333 × 10^(-10) s

Thus;

Power = (0.5 × 10^(-3))/(8.333 × 10^(-10))

Power ≈ 600,000 W

A 1,200kg roller coaster car starts rolling up a slope at a speed of 15m/s. What is the highest point it could reach

Answers

Answer: 11.36 m

Explanation:

Given

Mass of roller coaster is m=1200 kg

Initial speed of roller coaster is v=15 m/s

Energy at bottom and at the top is same i.e.

[tex]\Rightarrow \dfrac{1}{2}mv^2=mgh\\\\\Rightarrow \dfrac{1}{2}\times 1200\times 15^2=1200\times 9.8\times h\\\\\Rightarrow h=\dfrac{15^2}{2\times 9.8}\\\\\Rightarrow h=11.36\ m[/tex]

Thus, the highest point reach by the roller coaster is 11.36 m

Answer:

11.36m

Explanation:

When Peter tosses an egg against a sagging sheet, the egg doesn't break due to
A) reduced impulse.
B) reduced momentum.
C) both of these
D) neither of these

Answers

Answer has to be D. It has nothing to do with impulse. Just how the sheet has no volume.

It has to do with impulse or force. Just how the sheet has no volume. There is no sufficient impulse to crack the shell.

What is force?

A force is an effect that can alter an object's motion according to physics. An object with mass can change its velocity, or accelerate, as a result of a force. An obvious way to describe force is as a push or a pull. A force is a vector quantity since it has both magnitude and direction.

The sagging sheet gives the impact with the egg additional time, which prevents the egg from breaking when it is hurled against it. This lessens the force the egg would have applied to the wall had it been flung at it.

It has to do with impulse or force. Just how the sheet has no volume. There is no sufficient impulse to crack the shell.

To learn more about force refer to the link:

brainly.com/question/13191643

#SPJ2

If you and a friend are standing side-by-side watching a soccer game, would you both view the motion from the same reference frame?

a. Yes, we would both view the motion from the same reference point because both of us are at rest in Earth’s frame of reference.
b. Yes, we would both view the motion from the same reference point because both of us are observing the motion from two points on the same straight line.
c. No, we would both view the motion from different reference points because motion is viewed from two different points; the reference frames are similar but not the same.
d. No, we would both view the motion from different reference points because response times may be different; so, the motion observed by both of us would be different.

Answers

Answer:

the correct is C

Explanation:

The concept of a frame of reference is of crucial importance in physics, because it is the system from which measurements are made. Therefore, the relationships between the different reference frames must be clear so that the measurements made can be compared correctly.

In this case, the first observed sees the movement of the ball, suppose it moves a distance r, the second observed is next to me, separated by a distance x, therefore a frame of reference located in the movement of the ball. ball r '.

Consequently, the measurement carried out is related by

             r = r’ + x

where the bold letters indicate wind blowers.

With these explanations we review the different answers, the correct one is C

A basketball of mass 0.608 kg is dropped from rest from a height of 1.37 m. It rebounds to a height of 0.626 m.
(a) How much mechanical energy was lost during the collision with the floor?
(b) A basketball player dribbles the ball from a height of 1.37 m by exerting a constant downward force on it for a distance of 0.132 m. In dribbling, the player compensates for the mechanical energy lost during each bounce. If the ball now returns to a height of 1.37 m, what is the magnitude of the force?

Answers

Answer:

a)[tex]|\Delta E|=4.58\: J[/tex]  

b)[tex]F=61.90\: N[/tex]

Explanation:

a)

We can use conservation of energy between these heights.

[tex]\Delta E=mgh_{2}-mgh_{1}=mg(h_{2}-h_{1})[/tex]  

[tex]\Delta E=0.608*9.81(0.6026-1.37)[/tex]

Therefore, the lost energy is:

[tex]|\Delta E|=4.58\: J[/tex]  

b)

The force acting along the distance create a work, these work is equal to the potential energy.

[tex]W=\Delta E[/tex]

[tex]F*d=mgh[/tex]

Let's solve it for F.

[tex]F=\frac{mgh}{d}[/tex]

[tex]F=\frac{0.608*9.81*1.37}{0.132}[/tex]

Therefore, the force is:

[tex]F=61.90\: N[/tex]

I hope is helps you!

Question 9 of 10
According to the law of conservation of momentum, the total initial
momentum equals the total final momentum in a(n)
A. Interacting system
B. System interacting with one other system
C. Isolated system
D. System of balanced forces

Answers

Answer:

The answer is C. Isolated System

Answer:

C. Isolated system

Explanation :

∵According to law of  conservation of momentum ,In an isolated system ,the total momentum remains conserved.

During a practice shot put throw, the 7.9-kg shot left world champion C. J. Hunter's hand at speed 16 m/s. While making the throw, his hand pushed the shot a distance of 1.4 m. Assume the acceleration was constant during the throw.

Required:
a. Determine the acceleration of the shot.
b. Determine the time it takes to accelerate the shot.
c, Determine the horizontal component of the force exerted on the shot by hand.

Answers

Answer:

a)   a = 91.4 m / s²,  b)    t = 0.175 s, c)  

Explanation:

a) This is a kinematics exercise

           v² = vox ² + 2a (x-xo)

           a = v² - 0/2 (x-0)

           

let's calculate

          a = 16² / 2 1.4

          a = 91.4 m / s²

b) the shooting time

          v = vox + a t

          t = v-vox / a

          t = 16 / 91.4

          t = 0.175 s

c) let's use Newton's second law

          F = ma

          F = 7.9 91.4

          F = 733 N

1.- Que distancia recorrió una carga de 2,5x10-6 coul, generando así un campo eléctrico de 55new/coul.​

Answers

Answer:

r = 20.22 m

Explanation:

Given that,

Charge,[tex]q=2.5\times 10^{-6}\ C[/tex]

Electric field, [tex]E=55\ N/C[/tex]

We need to find the distance. We know that, the electric field a distance r is as follows :

[tex]E=\dfrac{kq}{r^2}\\\\r=\sqrt{\dfrac{kq}{E}}\\\\r=\sqrt{\dfrac{9\times 10^9\times 2.5\times 10^{-6}}{55}}\\\\r=20.22\ m[/tex]

So, the required distance is 20.22 m.

A horizontal force of P=100 N is just sufficient to hold the crate from sliding down the plane, and a horizontal force of P=350 N is required to just push the crate up the plane. Determine the coefficient of static friction between the plane and the crate, and find the mass of the crate.

Answers

"down/up the plane" suggests an inclined plane, but no angle is given so I'll call it θ for the time being.

The free body diagram for the crate in either scenario is the same, except for the direction in which static friction is exerted on the crate. With the P = 100 N force holding up the crate, static friction points up the incline and keeps the crate from sliding downward. When P = 350 N, the crate is pushed upward, so static friction points down. (see attached FBDs)

Using Newton's second law, we set up the following equations.

• p = 100 N

F (parallel) = f + p cos(θ) - mg sin(θ) = 0

F (perpendicular) = n - p sin(θ) - mg cos(θ) = 0

P = 350 N

F (parallel) = P cos(θ) - F - mg sin(θ) = 0

F (perpendicular) = N - P sin(θ) - mg cos(θ) = 0

(where n and N are the magnitudes of the normal force in the respective scenarios; ditto for f and F which denote static friction, so that f = µn and F = µN, with µ = coefficient of static friction)

Solve for n and N :

n = p sin(θ) + mg cos(θ)

N = P sin(θ) - mg cos(θ)

Substitute these into the corresponding equations containing µ, and solve for µ :

µ = (mg sin(θ) - p cos(θ)) / (mg cos(θ) + p sin(θ))

µ = (P cos(θ) - mg sin(θ)) / (P sin(θ) + mg cos(θ))

Next, you would set these equal and solve for m :

(mg sin(θ) - p cos(θ)) / (mg cos(θ) + p sin(θ)) = (P cos(θ) - mg sin(θ)) / (P sin(θ) + mg cos(θ))

...

Once you find m, you back-substitute and solve for µ, but as you might expect the result will be pretty complicated. If you take a simple angle like θ = 30°, you would end up with

m ≈ 36.5 kg

µ ≈ 0.256

The coefficient of static friction between the plane and the crate is μ = 0.256 and the mass of the crate is m=36.4 kg.

From the given,

The force that opposes the crate by sliding is P = 100N

In X-axis, the sum of forces is zero.

ΣF = 0

Pcosθ - mgsinθ-Ff = 0

Ff = Pcosθ - mgsinθ

In Y-axis

Psinθ - mgcosθ - N = 0

N = Psinθ-mgcosθ

Frictional force, Ff = μN, μ is the coefficient of friction

Ff = μN

Pcos30- mgsin30 + μ( Psin30+mgcos30) = 0

μ = mgsin30-Pcos30/Psin30+mgcos30 ------1

The block is sliding with the horizontal force, F = 350N

X-axis

P₂cosθ - mgsinθ-Ff = 0

Y-axis

P₂sinθ - mgcosθ - N = 0

N = P₂sinθ-mgcosθ

μ = P₂cos30-mgsin30/P₂sin30-mgcos30   -----2

Equate equations 1 and 2

mgsin30-Pcos30/Psin30+mgcos30 =P₂cos30-mgsin30/P₂sin30-mgcos30

4.905m-86.6/50+8.49 = 303.1-4.905m/175+8.49

41.7m² + 123m - 1.516×10⁴ = 0

-41.7m² +2330m -1.516×10⁴(4.905-86.6)(175+8.49) =(303.1-4.905)(50+8.49)

83.4m² - 2207m -3.03×10⁴ = 0

m= 36.4 kg

Hence, the mass of the crate is 36.4 Kg.

Substitute the value of m in equation 1,

μ = 4.905(36.4) - 86.6 / 50 + 8.49

μ  = 0.256

Thus, the coefficient of static friction is 0.256.

To learn more about friction and its types:

https://brainly.com/question/30886698

#SPJ1

A generator is designed to produce a maximum emf of 190 V while rotating with an angular speed of 3800 rpm. Each coil of the generator has an area of 0.016 m2. If the magnetic field used in the generator has a magnitude of 0.052 T, how many turns of wire are needed

Answers

Answer:

The number of turns of wire needed is 573.8 turns

Explanation:

Given;

maximum emf of the generator, = 190 V

angular speed of the generator, ω = 3800 rev/min =

area of the coil, A = 0.016 m²

magnetic field, B = 0.052 T

The number of turns of the generator is calculated as;

emf = NABω

where;

N is the number of turns

[tex]\omega = 3800 \frac{rev}{min} \times \frac{2\pi}{1 \ rev} \times \frac{1 \min}{60 \ s } = 397.99 \ rad/s[/tex]

[tex]N = \frac{emf}{AB\omega } \\\\N = \frac{190}{0.016 \times 0.052\times 397.99} \\\\N = 573.8 \ turns[/tex]

Therefore, the number of turns of wire needed is 573.8 turns

convert 56km/h to m/s.​

Answers

Explanation:

15.556 metres per second

Other Questions
48. What is the volume of the cuboid below? 3cm 2cm 2cm What changes were made to automobiles after World War II There are 4 white and 5 red (indistinguishable) balls in a bag. Suppose you draw one ballout at a time without replacement and stop when you have drawn all the white (4 white) orall the red (5 red) balls. What is the probability that the last ball you drawn was a whiteball? 3s + 4t = 228s + 8t = 48What is s and what is t(Similtaneous Equations) How does tragedies refer to the depiction of social realities while comedies present a utopian frame of life?/ PLISSSSSSSS HELPPPPP!!!!!!!!!!!!!!!!!!!!!I will give brainliest............ Score for Question 2: ___ of 5 points) 2. Write the equation of the circle in general form. Show your work. a particle undergoes three consecutive displacement d1=(15i+30j+12k)cm,d2=(23i-14j-5.0k)cm and d3=(-13i+15j)cm find the component of the resultant displacement and magnitude? Public health officials claim that people living in low income neighborhoods have different Physical Activity Levels (PAL) than the general population. This is based on knowledge that in the U.S., the mean PAL is 1.65 and the standard deviation is 0.55. A study took a random sample of 51 people who lived in low income neighborhoods and found their mean PAL to be 1.63. Using a one-sample z test, what is the z-score for this data 3/4 + 5/4 with explanation and steps.... solve the inequality (3-z)/(z+1) 1 please show the steps and the interval notation. thank you! In 1681, which Middle Colony had an established Quaker religious community and was named for William Penn? A. Pennsylvania B. Rhode Island C. South Carolina D. New Jersey Chang knows one side of a triangle is 13 cm. Which set of two sides is possible for the lengths of the other two sidesof this triangle? 5 cm and 8 cmO 6 cm and 7 cmO 7 cm and 2 cm8 cm and 9 cm Please help ASAP and please show work if possible. ) ) A teacher teaches two classes with 8 students each. Each student has a 95% chance of passing their class independent of the other students. Find the probability that, in exactly one of the two classes, all 8 students pass. To what extent were the actions of significant individuals the main factor in the rise of Nazism in Germany in the 20th Century? when was lung cancer discovered what is the central idea of this excerpt A: the introduction of bicycle offered woman relief from their oppressive restrictions. B: In the late nineteenth century Americans could not grasp the significance of the bicycle. C: Woman were forced to wear restrictive clothing that made bicycle riding a challenge.D: Men and woman forgot societal rules about proper behavior when they rode their bicycles. summary this chapter for me oliver twist chapter ii