Answer:
The lipid bilayer made up of Palmitic acid will have a higher melting transition temperature
Explanation:
The one with a higher melting transition temperature is the lipid layer with a higher melting temperature
Melting temperature of palmitoleic acid = -0.5°C
Melting temperature of palmitic acid = 62.9°C
Hence the lipid bilayer made up of Palmitic acid will have a higher melting transition temperature
Please help me fast! Pleaseee
I think 2 answer is write
The color cyan has a frequency of 5.902x10^14 What is the wavelength in nm ? Record your answer with 2
decimals.
The wavelength of the color cyan is 508 nm.
To solve the problem, we use the following equation that relates the frequency (ν) and the wavelength (λ) of a wave:
c = λ x ν
Given:
c = speed of light = 3.00 x 10⁸ m/s (is a constant)
ν = 5.902 x 10¹⁴ Hz = 5.902 s⁻¹
We introduce the data to calculate the wavelength in m:
λ = c/ν = (3.00 x 10⁸ m/s)/(5.902 s⁻¹) = 5.08 x 10⁻⁷ m
We know that 10⁻⁹m = 1 nm, so we convert λ to nm:
λ = 5.08 x 10⁻⁷ m x 1 nm/10⁻⁹m = 508 nm
To learn more about the relationship between frequency and wavelength in a wave, you can visit: https://brainly.com/question/4386945
Hydrogengasand oxygengas react to form water vapor. Suppose you have of and of in a reactor. Calculate the largest amount of that could be produced. Round your answer to the nearest .
The question is incomplete. The complete question is :
Hydrogen [tex](H_2)[/tex] gas and oxygen [tex](O_2)[/tex] gas react to form water vapor [tex](H_2O)[/tex]. Suppose you have 11.0 mol of [tex]H_2[/tex] and 13.0 mol of [tex]O_2[/tex] in a reactor. Calculate the largest amount of [tex]H_2O[/tex] that could be produced. Round your answer to the nearest 0.1 mol .
Solution :
The balanced reaction for reaction is :
[tex]$2H_2(g) \ \ \ \ + \ \ \ \ \ O_2(g)\ \ \ \rightarrow \ \ \ \ 2H_2O(g)$[/tex]
11.0 13.0
11/2 13/1 (dividing by the co-efficient)
6.5 mol 13 mol (minimum is limiting reagent as it is completely consumed during the reaction)
Therefore, [tex]H_2[/tex] is limiting reagent. It's stoichiometry decides the product formation amount from equation above it is clear that number of moles for [tex]H_2O[/tex] will be produced = number of moles of [tex]H_2[/tex]
= 11.0 mol
What are fires classified by?
Answer:
A fire class is a system of categorising fire with regard to the type of material and fuel for combustion. Class letters are often assigned to the different types of fire, but these differ between territories. There are separate standards for the United States, Europe, and Australia
What can be found on the periodic table?
A. the name of molecules formed by the element
B. the number of isotopes an element has
C. the date an element was discovered
D. the number of protons an element has
Answer:
I think the answer is..
The name of molecules formed by the element.
I hope it will help you !
If 7 mol of copper reacts with 4 mol of oxygen, what amount of copper (II) oxide is produced? What amount of the excess reactant remains?
Answer:
7 mol CuO
0.5 mol O₂
Explanation:
Step 1: Write the balanced equation
2 Cu + O₂ ⇒ 2 CuO
Step 2: Identify the limiting reactant
The theoretical molar ratio (TMR) of Cu to O₂ is 2:1.
The experimental molar ratio (EMR) of Cu to O₂ is 7:4 = 1.75:1.
Since TMR > EMR, Cu is the limiting reactant
Step 3: Calculate the amount of CuO produced
7 mol Cu × 2 mol CuO/2 mol Cu = 7 mol CuO
Step 4: Calculate the excess of O₂ that remains
The amount of O₂ that reacts is:
7 mol Cu × 1 mol O₂/2 mol Cu = 3.5 mol O₂
The excess of O₂ that remains is:
4 mol - 3.5 mol = 0.5 mol
what is calcium anyone tell plz
Answer:
Calcium is a chemical element with the symbol Ca and atomic number 20.
Calcium is a mineral that is necessary for life. In addition to building bones and keeping them healthy, calcium enables our blood to clot, our muscles to contract, and our heart to beat. About 99% of the calcium in our bodies is in our bones and teeth.
What is Bose Einstein state of matter and their examples
Answer:
A BEC ( Bose - Einstein condensate ) is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero is called BEC.
Examples - Superconductors and superfluids are the two examples of BEC.
Explanation:
What does quantization refer to?
Answer:
Quantization is the process of constraining an input from a continuous or otherwise large set of values (such as the real numbers) to a discrete set (such as the integers).
Explanation:
Quantization refers to the situation where an electromagnetic field consists of discrete energy parcels, photons.
What is Quantatization in Chemistry ?In Chemistry , the concept that a system cannot have any possible energy value but instead is limited to certain specific energy values (states). This states depend on the specific system in question.
Under this system, Energy could be gained or lost only in integral multiples of some smallest unit of energy, a quantum (the smallest possible unit of energy).
Hence, Quantization refers to the situation where an electromagnetic field consists of discrete energy parcels, photons.
Learn more about Quantum here ;
https://brainly.com/question/16746749
#SPJ2
A tank contains oxygen gas at 2.551 atm. What is the pressure in mmHg?
The force exerted on the container by the particles of the matter is called pressure. The tank containing oxygen gas at 2.551 atm will have a pressure of 1939 mm Hg.
What is pressure?Pressure is the property used to estimate the force experienced by the system due to the liquid or the gas held in it. The pressure of the gas can be calculated by the ideal gas and force and area.
The pressure is created due to the collision of the particles of the gases and liquids on the wall perpendicularly. It is estimated in Pascal (Pa) as the standard unit along with atm and mmHg.
It is known that 1 atm = 760 mm Hg
Given,
The pressure of oxygen gas = 2.551 atm
Using the conversion factor the pressure from atm to mm Hg is calculated as,
1 atm = 760 mm Hg
2.551 atm = (2.551 atm × 760 mm Hg) ÷ 1 atm
= 1938.76 mmHg
Therefore, 1939 mm Hg is the pressure of the oxygen gas.
Learn more about pressure here:
https://brainly.com/question/20050281
#SPJ2
Which of the following substances can be used to neutralize HF?
A: HF
B: SO2
C: HCI
D: NaOH
Answer:
option (D) NaOH is right answer
A neutralization reaction is "a reaction in which an acid and a base react to form water and a salt and involves H+ ions and OH- ions to produce water.
What is an acid?An acid is "any hydrogen-containing substance that is capable of donating a proton or hydrogen ion to another substance".
What is base?Base is "a substance that gets dissociated in an aqueous solution to form hydroxide ions OH-".
Hence, NaOH can be used to neutralize HF.
To learn more about Neutralization reaction here
https://brainly.com/question/24367029
#SPJ2
calculate the total consumer surplus in the amusement park market if they a 12
Answer:
The total consumer surplus is 240.
Explanation:
If p=12 then q=20
0.5×(36−12)×20=240
here's the graph to help you see the change.
The solubility of lithium fluoride, LiF, is 1.6 g/L, or 6.2 x 10â2 M.
a. Write the balanced solubility equilibrium equation for LiF.
b. Determine the molar concentration of the lithium ion and the fluoride ion.
c. Write the Ksp expression for the reaction.
d. Calculate Ksp for lithium fluoride.
Answer:
a. LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
b. [Li⁺] = [F⁻] = 6.2 x 10⁻² M
c. Ksp = [Li⁺] [F⁻]
d. Ksp = 3.8 × 10⁻³
Explanation:
The solubility (S) of lithium fluoride, LiF, is 1.6 g/L, or 6.2 x 10⁻² M.
a. The balanced solubility equilibrium equation for LiF is:
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
b. We will make an ICE chart.
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
I 0 0
C +S +S
E S S
Then, [Li⁺] = [F⁻] = S = 6.2 x 10⁻² M
c. The solubility product constant, Ksp, is the equilibrium constant for a solid substance dissolving in an aqueous solution.
Ksp = [Li⁺] [F⁻]
d.
Ksp = [Li⁺] [F⁻] = (6.2 x 10⁻²)² = 3.8 × 10⁻³
Which of the following are examples of single replacement reactions? Select all that apply.
Answer:
Na2S(aq)+Cd(No3)2(aq)=CdS(s)+2NaNo3(aq)
Answer: it’s checkbox 2&3
Help please due today
Answer:
It is a becaues i am a doctor and i know about that
Explanation:Just here to help
How is a light bulb related to radiation?
A. Light bulbs do not have anything to do with radiation.
B. A light bulb emits radiation when its filament is burned out and can longer emit light. This makes it important to remove dead lightbulbs as soon as they wear out.
C. As light is emitted from the filament, the energy in the metal is replaced as lightbulbs absorb background radiation. This prevents the filament from burning out quickly but the radiation cannot be used as power so electricity is still required for the lightbulb to work.
D. The light emitted by a light bulb is a form of radiation that occurs when the filament heats up and its thermal emission gains enough energy to move into the visible spectrum.
Answer:
As light is emitted from the filament, the energy in the metal is replaced as lightbulbs absorb background radiation. This prevents the filament from burning out quickly but the radiation cannot be used as power so electricity is still required for the lightbulb to work.
the ability for carbon to form long chain or rings is
3 molecules NaOH determine the amount of grams
Answer:
In three mocelus 0.0001 gram.
8) Determine whether mixing each pair of the following results in a buffera. 100.0 mL of 0.10 M NH3 with 100.0 mL of 0.15 MNH4Cl b. 50.0 mL of 0.10 M HCL with 35.0 mL of 0.150 M NaOHc. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOHd. 175.0 mL of 0.10 M NH3 with 150.0 mL of 0.12 M NaOH
Answer:
a. 100.0 mL of 0.10 M NH₃ with 100.0 mL of 0.15 M NH₄Cl.
c. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOH.
Explanation:
A buffer system is formed in 1 of 2 ways:
A weak acid and its conjugate base.A weak base and its conjugate acid.Determine whether mixing each pair of the following results in a buffer.
a. 100.0 mL of 0.10 M NH₃ with 100.0 mL of 0.15 M NH₄Cl.
YES. NH₃ is a weak base and NH₄⁺ (from NH₄Cl ) is its conjugate base.
b. 50.0 mL of 0.10 M HCl with 35.0 mL of 0.150 M NaOH.
NO. HCl is a strong acid and NaOH is a strong base.
c. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOH.
YES. HF is a weak acid and it reacts with NaOH to form NaF, which contains F⁻ (its conjugate base).
d. 175.0 mL of 0.10 M NH₃ with 150.0 mL of 0.12 M NaOH.
NO. Both are bases.
6. Plants play a vital role in the environment because photosynthesis
ОООО
A. uses atmospheric oxygen and carbon dioxide to produce sugars and water.
B. uses atmospheric oxygen and water to produce carbon dioxide and water.
C. uses atmospheric carbon dioxide and water to produce sugars and oxygen.
D. uses atmospheric oxygen to produce sugars and water.
Plants play a vital role in the environment because photosynthesis uses atmospheric carbon dioxide and water to produce sugars and oxygen. Option C is correct.
Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy in the form of glucose (sugar). This process occurs in the chloroplasts of plant cells and requires the presence of sunlight, carbon dioxide (CO₂), and water (H₂O).
During photosynthesis, plants absorb carbon dioxide from the atmosphere through tiny openings called stomata in their leaves. At the same time, they take in water from the soil through their roots. Through a series of complex chemical reactions, the energy from sunlight is used to combine carbon dioxide and water, resulting in the production of glucose (sugar) and the release of oxygen (O₂) as a byproduct.
This process is represented by the equation:
6CO₂ + 6H₂O + sunlight → C₆H₁₂O₆ (glucose) + 6O₂
Plants use the glucose produced through photosynthesis as a source of energy for various metabolic processes and growth. The released oxygen is essential for the survival of other organisms, including humans, as it is used in cellular respiration to release energy from glucose.
Hence, C. is the correct option.
To know more about chemical energy here
https://brainly.com/question/1371184
#SPJ2
A sample of gas contains 0.1200 mol of H2(g) and 0.1200 mol of O2(g) and occupies a volume of 11.5 L. The following reaction
takes place:
H2(g) + O2(g)>H2O2(g)
Calculate the volume of the sample after the reaction takes place, assuming that the temperature and the pressure remain constant.
L
Answer:
5.75L is the volume of the sample after the reaction
Explanation:
Based on the reaction, 1 mole of H2 reacts with 1 mole of O2 to produce 1 mole of H2O2.
As in the reaction, 0.1200 moles of H2 and 0.1200 moles of O2 are added, 0.1200 moles of H2O2 are produced.
Before the reaction, the moles of gas are 0.2400 moles and after the reaction the moles are 0.1200 moles of gas.
Based on Avogadro's law, the moles of a gas are directly proportional to the volume under temperatura and pressure constant. The equation is:
V1/n1 = V2/n2
Where V is volume and n are moles of 1, initial state and 2, final state.
Replacing:
V1 = 11.5L
n1 = 0.2400 moles
V2 = ?
n2 = 0.1200 moles
11.5L*0.1200 moles / 0.2400 moles = V2
V2 = 5.75L is the volume of the sample after the reaction
What volume (in liters) of a solution contains 0.14 mol of KCl?
1.8 M KCl
Express your answer using two significant figures.
Answer:
[tex]\boxed {\boxed {\sf 0.078 \ L }}[/tex]
Explanation:
We are asked to find the volume of a solution given the moles of solute and molarity.
Molarity is a measure of concentration in moles per liter. It is calculated using the following formula:
[tex]molarity= \frac{moles \ of \ solute}{liters \ of \ solution}[/tex]
We know there are 0.14 moles of potassium chloride (KCl), which is the solute. The molarity of the solution is 1.8 molar or 1.8 moles of potassium chloride per liter.
moles of solute = 0.14 mol KCl molarity= 1.8 mol KCl/ Lliters of solution=xSubstitute these values/variables into the formula.
[tex]1.8 \ mol \ KCl/ L = \frac { 0.14 \ mol \ KCl}{x}[/tex]
We are solving for x, so we must isolate the variable. First, cross multiply. Multiply the first numerator and second denominator, then the first denominator and second numerator.
[tex]\frac {1.8 \ mol \ KCl/L}{1} = \frac{0.14 \ mol \ KCl}{x}[/tex]
[tex]1.8 \ mol \ KCl/ L *x = 1*0.14 \ mol \ KCl[/tex]
[tex]1.8 \ mol \ KCl/ L *x = 0.14 \ mol \ KCl[/tex]
Now x is being multiplied by 1.8 moles of potassium chloride per liter. The inverse operation of multiplication is division, so we divide both sides by 1.8 mol KCl/L.
[tex]\frac {1.8 \ mol \ KCl/ L *x}{1.8 \ mol \ KCl/L} = \frac{0.14 \ mol \ KCl}{1.8 \ mol \ KCl/L}[/tex]
[tex]x= \frac{0.14 \ mol \ KCl}{1.8 \ mol \ KCl/L}[/tex]
The units of moles of potassium chloride cancel.
[tex]x= \frac{0.14 }{1.8 L}[/tex]
[tex]x=0.07777777778 \ L[/tex]
The original measurements of moles and molarity have 2 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 7 in the ten-thousandth place tells us to round the 7 up to a 8.
[tex]x \approx 0.078 \ L[/tex]
There are approximately 0.078 liters of solution.
what is the difference between Absorption and adsorption
Select the structure of a compound C6H14 with a base peak at m/z 43.
A) CH3CH2CH2CH2CH2CH3
B) (CH3CH2)2CHCH3
C) (CH3)3CCH2CH3
D) (CH3)2CHCH(CH3)2
E) None of these choices.
The structure of a compound C₆H₁₄ with a base peak at m/z 43 is none of these .
What is a compound?Compound is defined as a chemical substance made up of identical molecules containing atoms from more than one type of chemical element.
Molecule consisting atoms of only one element is not called compound.It is transformed into new substances during chemical reactions. There are four major types of compounds depending on chemical bonding present in them.They are:
1)Molecular compounds where in atoms are joined by covalent bonds.
2) ionic compounds where atoms are joined by ionic bond.
3)Inter-metallic compounds where atoms are held by metallic bonds
4) co-ordination complexes where atoms are held by co-ordinate bonds.
They have a unique chemical structure held together by chemical bonds Compounds have different properties as those of elements because when a compound is formed the properties of the substance are totally altered.
Learn more about compounds,here:
https://brainly.com/question/13516179
#SPJ6
Calculate the enthalpy change for the reaction of hydrogen and chlorine using the bond energies below.
"BOND." " BOND ENERGY "
H-H. 436
CL-CL. 242
H-CL. 431
Answer:
final-intial temperature= enthalpy change
A chlorine (CI) atom has 7 valence electrons. Which of the following would be the most likely way for a chlorine atom to become stable?
A. Lose 5 electrons
B. Gain 2 electrons
C. Gain 1 electron
D. Lose 7 electrons
Answer:
Option C. Gain 1 electron
Explanation:
Valence electron(s) are the electron(s) located on the outermost shell of an atom. Valency is simply defined as the combining power of an atom.
Chlorine (Cl) atom has 7 valence electron. This implies that Cl needs just one electron to complete it's octet configuration. It will be difficult for Cl to lose any of it's valence electron(s). Cl can either gain or share 1 electron to become stable.
Thus, considering the options given in the question above, option C gives the correct answer to the question.
In an ELISA, the compound 4-chloro-1-naphthol is used because:_______
a. it turns color in the presence of an enzyme that is bound to the secondary antibody
b. it helps the primary antibody bind to the protein
c. it helps the secondary antibody to bind to the protein
d. all of the choices
Answer:
a. It turns color in the presence of an enzyme that us bound to the secondary antibody.
Explanation:
The compound chloronapthenel is used in the reaction because it changes the color in the presence of an enzyme. It is strong organic compound which is used in biochemical processes.
A sample of neon gas occupies 105 L at 27°C under a pressure of
985 torr. What volume would it occupy at standard condition
Answer: Volume occupied by given neon sample at standard condition is 123.84 L.
Explanation:
Given: [tex]V_{1}[/tex] = 105 L, [tex]T_{1} = 27^{o}C = (27 + 273) K = 300 K[/tex], [tex]P_{1}[/tex] = 985 torr
At standard conditions,
[tex]T_{2}[/tex] = 273 K, [tex]P_{2}[/tex] = 760 K, [tex]V_{2}[/tex] = ?
Formula used to calculate the volume is as follows.
[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}[/tex]
Substitute the values into above formula as follows.
[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}\\\frac{985 torr \times 105 L}{300 K} = \frac{760 torr \times V_{2}}{273 K}\\V_{2} = \frac{94116.75}{760} L\\= 123.84 L[/tex]
Thus, we can conclude that volume occupied by given neon sample at standard condition is 123.84 L.
Give the amino acid sequence in the following tetrapeptide using both 3-letter and 1-letter abbreviations for the amino acids. (Capitalize amino acid abbreviations appropriately.) ball
Answer:
ggggggggggggg
Explanation:
gggggggggggthyjum
What is the minimum pressure in kPa that must be applied at 25 °C to obtain pure water by reverse osmosis from water that is 0.690 M in sodium chloride and 0.08 M in zinc sulfate? Assume complete dissociation for electrolytes.
Answer:
1. Water purification method by reverse osmosis – membrane filtration
2. Method of purifying pure water by filter
3. Demineralization by ion exchange method
3. Demineralization by ion exchange method
Explanation: