Given that the point (-2,8) is on the graph of an equation that is symmetric with respect to the x-axis, what other point is on the graph?
(Type an ordered pair)
I just need the numbers can anyone help me with this ??
Step-by-step explanation:
Hello!
In order to graph this, a point would have to go through (-6, 1). Then, since it says it needs a slope of 5 (or, to make things a bit easer, we could see it as 5/1) we'd need the next point to be 5 up and 1 across.
One possible solution:
(-6, 1) -> (-5, 6)
A boy is flying a kite from the terrace of his house. The kite is 175 m above the terrace. If the terrace is 80 m from the ground floor, findthe distance between the kite and the basement which is 8 m below the ground level.
175 m above the terrace + 80 m from terrace to ground + 8m from ground to basement:
175 + 80 + 8 = 263 meters
what is the rule for the reflection
Step-by-step explanation:
We reflect We triangle across both axis so the x and y values will both switch.
Our triangle is originally in the second quadrant but then go to the 4the after we reflect it.
Second Quadrant are
^;8+1—](
The step function f(x) is graphed
What is the value of ( -1)?
3
4
0 1
3
0 0
2
1
1
.
-4-3-2
1
2
3
4
5 6
X
-2
-4-3-2
1
2
3
4
5 6
x
-2gbhdfcjfghu
Help please, I need with the question
Answer: [tex]\frac{4}{3}[/tex]
Step-by-step explanation:
tangent of ∠PLM = [tex]\frac{opposite}{adjacent} =\frac{4}{3}[/tex]
Answer:
PLM=4/3
Step-by-step explanation:
Helpppp Please! Please!
Cual de las siguientes expreciones permite a fatima obtener t que es la cantidad de palitos nesesaria para armar una figura n
Answer:
T(n) = 4 + 12*n
Step-by-step explanation:
La pregunta completa se puede ver en la imagen de abajo.
En ella, podemos ver que:
La primera figura tiene: 16 palitos
la segunda figura, con n = 2, se añaden 3 palitos en cada extremo, por lo que tendremos 16 palitos + 4*3 palitos = (16 + 12) palitos
De manera similar, en la tercera figura se vuelven a añadir 3 palitos en cada extremo de la cruz, entonces esta figura tendrá:
(16 + 12) palitos + 4*3 palitos = (16 + 12 + 12) palitos.
Así, tenemos la relación:
T(1) = 16
T(2) = 16 + 12
T(3) = 16 + 12 + 12
Podemos asumir que la forma general será:
T(n) = 16 + 12*(n - 1)
podemos reescribir esto como:
T(n) = (12 + 4) + 12*(n - 1)
= 4 + 12 + 12*(n - 1)
= 4 + 12*n
La opción correcta es la primera.
Find the following products :-
( -7 x² ) × 2 y
please give answer immediately
and give it correct
please don't write incorrect answer
Answer:
- 14x²y
Step-by-step explanation:
Given
- 7x² × 2y
= - 7 × 2 × x² × y
= - 14x²y
Please Help!!
The scale on the map is stated as 1 : 200000. A main road connects two towns which are 34 kilometres apart. How far will it be on the map, in centimetres, between the two towns along the main road
WILL GIVE BRAINLIEST!!
Answer:
34 : 6800000
Step-by-step explanation:
1 : 20000034km : ?34km : 34km × 20000034km : 6800000km34 : 6800000what is the answer to this equation?
Answer:
4i
Step-by-step explanation:
apply (a+b)^2 formula
help me with this question: Find y
Answer:
y = 4
Step-by-step explanation:
From the question given above, the following data were obtained:
Angle θ = 45
Hypothenus = 4√2
Adjacent = y =?
The value of y can be obtained by using cosine ratio as illustrated below:
Cos θ = Adjacent / Hypothenus
Cos 45 = y / 4√2
Cross multiply
y = 4√2 × Cos 45
Recall
Cos 45 = 1 / √2
Therefore,
y = 4√2 × 1/√2
y = 4
find the 10 degree value can u help me on it
Solution:-10
As <AGQ and <EQG are corresponding interior angles
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow 60°+a=180[/tex]
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow a=180-60[/tex]
[tex]\\ \qquad\quad\boxed{\sf{:}\twoheadrightarrow a=120}[/tex]
<AGQ=<PQR=60°<BHF=<PRQ=75°[tex]\\ \qquad\quad\boxed{\sf{:}\twoheadrightarrow b=75°}[/tex]
According to angle sum property
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow b+c+<PQR=180[/tex]
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow c+75+60=180[/tex]
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow c+135=180[/tex]
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow c=180-135[/tex]
[tex]\\ \qquad\quad\boxed{\sf{:}\twoheadrightarrow c=45°}[/tex]
For each pair of equations, write the letter of the equation that expresses an equal value.
1. a. L = 1 dm3 b. 1 L = 1 cm3
2. a. 1 mL = 1 cm3 b. 1 cm3 = 1 L
3. a. 0°C = –273 K b. 0 K = −273°C
4. a. 1 kg = 100 g b. 1,000 g = 1 kg
5. a. 400 cm = 4.0 m b. 400 cm = 0.40 m
6. a. 1 dm = 10 m b. 1 dm = 0.10 m
7. a. 100°C = 373 K b. 373 K = 10°C
We must understand that certain standards has been layed down for the conversions of measuring units. A summary of such standards are discussed below:
1. Option A. 1 L = 1 dm³
2. Option A. 1 mL = 1 cm³
3. Option B. 0 K = −273 °C
4. Option B. 1000 g = 1 kg
5. Option A. 400 cm = 4.0 m
6. Option B. 1 dm = 0.10 m
7. Option A. 100°C = 373 K
1. Option A. 1 L = 1 dm³
Option B. 1 L = 1 cm³
From standard measurement,
1 L = 1 dm³
1 L = 1000 cm³
From the measuring standard, we can see that 1 L ≠ 1 cm³.
Hence, option A gives the correct answer.
2. Option A. 1 mL = 1 cm³
Option B. 1 cm³ = 1 L
Hence, option A gives the correct answer.
From standard measurement,
1 mL = 1 cm³
1000 cm³ = 1 L
Thus, option A gives the correct answer.
3. Option A. 0°C = –273 K
Option B. 0 K = −273 °C
Recall:
T (K) = T(°C) + 273
T (K) = Temperature in Kelvin
T(°C) = Temperature in decree celcius
Next, we shall convert 0°C to K
T(°C) = 0°C
T (K) = T(°C) + 273
T (K) = 0 + 273
T (K) = 273 K
Thus, 0°C is equivalent to 273 K
Next, we shall convert 0 K to °C
T(K) = 0
T (K) = T(°C) + 273
0 = T(°C) + 273
Collect like terms
0 – 273 = T(°C)
T(°C) = –273°C
Thus, 0 K is equivalent to –273°C
Therefore, option B gives the correct answer.
4. Option A. 1 kg = 100 g
Option B. 1000 g = 1 kg
From standard measurement,
1 Kg = 1000 g
1000 g = 1 Kg
Hence, Option B gives the right answer
5. Option A. 400 cm = 4.0 m
Option B. 400 cm = 0.40 m
From standard measurement,
100 cm = 1 m
Converting 400 cm to m, we have:
[tex]400 cm = 1 m\\400 cm = \frac{400 cm * 1 m }{100 cm}\\400 cm = 4 m[/tex]
Thus, option A gives the correct answer.
6. Option A. 1 dm = 10 m
Option B. 1 dm = 0.10 m
From standard measurement,
10 dm = 1 m
Thus,
[tex]1 dm = \frac{1 dm * 1 m}{10 dm}\\1 dm = 0.1 m[/tex]
Therefore, option B gives the correct answer.
7. Option A. 100°C = 373 K
Option B. 373 K = 10°C
Recall:
T (K) = T(°C) + 273
T (K) = Temperature in Kelvin
T(°C) = Temperature in decree celcius
Next, we shall convert 100°C to K
T(°C) = 100°C
T (K) = T(°C) + 273
T (K) = 100 + 273
T (K) = 373 K
Thus, 100°C is equivalent to 373 K
Next, we shall convert 373 K to °C
T(K) = 373
T (K) = T(°C) + 273
373 = T(°C) + 273
Collect like terms
373 – 273 = T(°C)
T(°C) = 100°C
Thus, 373 K is equivalent to 100°C
Therefore, option A gives the correct answer.
SUMMARY:
1. Option A. 1 L = 1 dm³
2. Option A. 1 mL = 1 cm³
3. Option B. 0 K = −273 °C
4. Option B. 1000 g = 1 kg
5. Option A. 400 cm = 4.0 m
6. Option B. 1 dm = 0.10 m
7. Option A. 100°C = 373 K
Learn more:
https://brainly.com/question/11650994
https://brainly.com/question/12088003
Based on the graph of the trigonometric function,
what is the period?
Answer:
[tex]\displaystyle 4[/tex]
Explanation:
[tex]\displaystyle y = 3sin\:(\frac{\pi}{2}x + \frac{\pi}{2}) \\ y = 3cos\:\frac{\pi}{2}x[/tex]
[tex]\displaystyle y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{4} \hookrightarrow \frac{2}{\frac{\pi}{2}}\pi[/tex]
OR
[tex]\displaystyle y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{4} \hookrightarrow \frac{2}{\frac{\pi}{2}}\pi[/tex]
You will need the above information to help you interpret the graph. So, sinse you ONLY have a graph to wourk with, you MUST figure the period out by using wavelengths. So, looking at where the graph hits [tex]\displaystyle [-5, 0],[/tex] from there to [tex]\displaystyle [-1, 0],[/tex] they are obviously [tex]\displaystyle 4\:units[/tex] apart, telling you that the period of the graph is [tex]\displaystyle 4.[/tex] Now, the amplitude is obvious to figure out because it is the A-term, but of cource, if you want to be certain it is the amplitude, look at the graph to see how low and high each crest extends beyond the midline. The midline is the centre of your graph, also known as the vertical shift, which in this case the centre is at [tex]\displaystyle y = 0,[/tex] in which each crest is extended three units beyond the midline, hence, your amplitude. So, no matter how far the graph shifts vertically, the midline will ALWAYS follow.
I am delighted to assist you at any time.
Please help a-e I will rate and like response. Thank u
Answer:
VOLUME OF RIGHT CIRCULAR CONE=≈74.93136cm^3
VOLUME OF SPHERE: ≈523.6cm^3
f(x) = x2 – 12x – 29
f(3) = (x+ ?)+ ?
Answer:
-6 and - 65
Step-by-step explanation:
X-12x-29, by completing the square we get (x-6)^2-65
if the hypotenuse of an isosceles right triangle has a length of 5 centimeters what is the length of one of the legs
Answer:
a =b = [tex]\frac{5\sqrt{5} }{5}[/tex]
Step-by-step explanation:
[tex]a^{2} +b^{2} = 5 ^{2}[/tex]
a = b
[tex]2a^{2} = 5 ^{2}[/tex]
[tex]2a^{2} = 25\\[/tex]
[tex]a^{2} = \frac{25}{5}[/tex]
a = [tex]\frac{5}{\sqrt{5} }[/tex]
must rationalize...
a =b = [tex]\frac{5\sqrt{5} }{5}[/tex]
Simultaneous equation 2x-Y= -1 x-2y=4
Answer:
x + y = -5
Step-by-step explanation:
2x - x - y + 2y = -1 - 4
x + y = -5
can i get some help please
The sum of the interior angles in a triangle is 180 degrees.
72 + 35 + <1 = 180
107 + <1 = 180
<1 = 73 degrees
Hope this helps!
Answer:
<1 = 73
Step-by-step explanation:
The sum of the angles of a triangle is 180 degrees
72+ 35+ <1 = 180
Combine like terms
107 + <1 =180
Subtract 107 from each side
<1 = 180-107
<1 = 73
If f(1) = 4 and f(n) = f(n − 1) + 5 then find the value of f(5).
Answer:
25
Step-by-step explanation:
f(5)=5(5-1)+5
f(5)=5(4)+5
f(5)=20+5
f(5)=25
Answer:
f(5) = 24
Step-by-step explanation:
f(1) = 4
f(n) = f(n − 1) + 5
Let n = 2
f(2) = f(2 − 1) + 5 = 4+5 = 9
Let n = 3
f(3) = f(3 − 1) + 5 = f(2)+5 = 9+5 = 14
Let n = 4
f(4) = f(4 − 1) + 5 = f(3)+5 = 14+5 = 19
Let n = 5
f(5) = f(5 − 1) + 5 = f(4)+5 = 19+5 = 24
What is the value of the expression below when y = 8 y=8? 2 y + 7 2y+7
Answer:
23
Step-by-step explanation:
[tex]2 y + 7[/tex]
Replace y with 8
[tex]= 2 (8) + 7\\= 16+ 7\\= 23[/tex]
Therefore, the value of the expression when y=8 is 23.
I hope this helps!
A rectangular drawing is enlarged by 30%. The original dimensions of this drawing are 16cm x 24cm.
Determine the scale factor, as a fraction that represents this enlargement. What are the new, enlarged
dimensions?
Answer:
Step-by-step explanation: Scale [tex]\frac{130}{100} = \frac{13}{10}[/tex]
New dimensions [tex]16 * 1.3 --- 24*1.3 =20.8 cm * 31.2 cm[/tex]
Someone Please help‼️‼️‼️
Hi there!
[tex]\large\boxed{m = 2}[/tex]
Since the line is increasing (the y-values are increasing as x increases), we can automatically eliminate any answer choice containing a negative slope.
Thus, the only correct answer choice would be m = 2.
We could also solve using the slope formula:
m = y2-y1/x2-x1
Plug in given points:
m = 3-1 / 0 - (-1)
m = 2 / 1 = 2
please answer this!!
solve for x *show work*
Answer:
x = 14
Step-by-step explanation:
The sum of the interior angles of a six sided figure is 720
10x + 8x-16+12x-8 +7x+2 +9x+4 +6x+10 = 720
Combine like terms
52x-8=720
Add 8 to each side
52x-8+8 = 720+8
52x = 728
Divide by 52
52x/52 = 728/52
x = 14
Step-by-step explanation:
here's the answer for thy question
dilations geometry!
Answer:
A' (0,20)
B' (30,-20)
C' (-10,-40)
Answered by GAUTHMATH
The volume of a sphere is 3,000π m3. What is the radius of the sphere to the nearest meter?
Answer:
13m
Step-by-step explanation:
volume of sphere = [tex]\frac{4}{3} * pi * r^{3}[/tex] = 3000π
4r^3/3 = 3000
r^3 =2250
r = ∛2250 = 13.10370 = 13
Answer:
Radius of the sphere is 13.1 m.
Step-by-step explanation:
Volume:
[tex]{ \boxed{ \pmb{volume = { \bf{ \frac{4}{3}\pi {r}^{3} }}}}}[/tex]
Substitute:
[tex]{ \tt{3000\pi = \frac{4}{3} \times \pi \times {( {r}^{3}) } }} \\ \\ { \tt{ {r}^{3} = \frac{3000 \times 3}{4} }} \\ \\ { \tt{r = \sqrt[3]{ \frac{3000 \times 3}{4} } }} \\ { \tt{r = 13.1 \: m}}[/tex]
Write down the nth term of the following sequence
the following pattern are made using small squares
Answer:
a) [tex]n = 4 + 7\cdot i[/tex], [tex]\forall\, i \in \mathbb{N}_O[/tex], b) [tex]n = 2 + (i+1)^{2}[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex]
Step-by-step explanation:
a) The sequence is representative for an arithmetic sequence, whose key characteristic is that difference is between two consecutive elements is the same. In particular, the sequence has a difference of 7 between any two consecutive elements and the initial element is 4. Hence, we can derive the following formula:
[tex]n = n_{o} + r\cdot i[/tex], [tex]\forall\, i \in \mathbb{N}_O[/tex] (1)
Where:
[tex]n_{o}[/tex] - Initial element.
[tex]r[/tex] - Difference between two consecutive elements.
[tex]i[/tex] - Index.
If we know that [tex]n_{o} = 4[/tex] and [tex]r = 7[/tex], then the expression for the n-th term of the sequence is:
[tex]n = 4 + 7\cdot i[/tex], [tex]\forall \,i\in\mathbb{N}_{O}[/tex]
b) In this case, we have a geometric sequence described by the following equation:
[tex]n = 2 + (i+1)^{2}[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex] (2)
The constant element ([tex]2[/tex]) represents the two extreme squares, whereas the second order binomial represents the total of squares in the middle ([tex](i+1)^{2}[/tex]) and emulates the area formula of the square.
Answer:
Step-by-step explanation:
?
please answer this
simplify it too
Answer:
x^2 +3x
Step-by-step explanation:
The outer rectangle has an area of
A = l*w = (4x)*(x+2) = 4x^2 +8x
The inner rectangle has an area of
A = (3x+5)*x = 3x^2 +5x
Subtract the inner rectangle from the outer rectangle
Shaded area = 4x^2 +8x - ( 3x^2 +5x)
Distribute the minus sign
=4x^2 +8x - 3x^2 -5x
Combine like terms
= x^2 +3x