Sarah walks into a grocery store with no more than 20 dollars to spend and needs to buy at least 3.5 pounds of flour and at least 2 pounds of sugar. Flour is 2 dollars per pound and sugar is 1.5 dollars per pound. Let x the amount of flour purchased and y be the amount of sugar purchased? Which of the following systems of inequalities represents this situation?

Answers

Answer 1

Answer:

x ≥ 3.5

y ≥ 2

2x + 1.5y ≤ 20

Step-by-step explanation:

Given :

Total Amount to spend ≤ $20

Let:

Amount of flour purchased = x

Amount of sugar purchased = y

Cost :

Flour = $2 per pound

Sugar = $1.5 per pound

Pounds of :

flour to be purchased ≥ 3.5

Sugar to be purchased ≥ 2

Hence, the system of inequalities :

x ≥ 3.5

y ≥ 2

Total Cost of x + total cost of y must be less than or equal to total amount

2x + 1.5y ≤ 20

Answer 2

Answer: x ≥ 3.5

y ≥ 2

2x + 1.5y ≤ 20

Step-by-step explanation: To write a system of inequalities, it is important to determine the restrictions. One restriction is that Sarah wants to buy at least 3.5 pounds of flour. "At least" means that 3.5 is the smallest amount she would buy and 3.5 can be included. This is expressed as x ≥ 3.5. She also wants at least 2 pounds of sugar, so similar to the flour, this can be written as y ≥ 2. Finally, the cost can be expressed as 2x + 1.5y. This is a restriction because Sarah can spend up to $20, so 2x + 1.5y is less than or equal to $20, or 2x + 1.5y ≤ 20.


Related Questions

Heeelp please!!! Picture included

Answers

Answer:

2nd choice

Step-by-step explanation:

In the diagram below, POR is a diameter, <QPR is a°,<PRS is (4a+12)°. find the value of a​

Answers

Answer:

22=4

Step-by-step explanation:

0977-=ytb

How long will it take her to travel 72 miles? use the unit ratio to solve the following problem.

Answers

Answer:

It will take Noshwa 3 hours and 36 minutes to travel 72 miles.

Step-by-step explanation:

Since Noshwa is completing the bike portion of a triathlon, assuming that she travels 40 miles in 2.5 hours, to determine how long will it take her to travel 72 miles, the following calculation must be performed:

40 = 2.5

72 = X

72 x 2.5 / 50 = X

180/50 = X

3.6 = X

1 = 60

0.6 = X

0.6 x 60 = X

36 = X

Therefore, it will take Noshwa 3 hours and 36 minutes to travel 72 miles.

Can someone help me with this problem?

Answers

no i don't even think albert could

Does anyone know this question?

Answers

Step-by-step explanation:

this is a relatively easy function. Just plug in the value for x

a. A CD is discounted by 10%, and then from the already discounted price, a further 15% discount is given. If the price now is $12.93, find the original price.

b. What is the total discount percent as compared to the original price?

Answers

Answer:

  a. $16.90

  b. 23.5%

Step-by-step explanation:

a. After the two discounts, the original price is multiplied by ...

  (1 -10%)(1 -15%) = 0.90×0.85 = 0.765

Then the original price is found from ...

  $12.93 = 0.765 × original price

  original price = $12.93 / 0.765 ≈ $16.90

__

b. The effective discount from the original price is ...

  1 -0.765 = 0.235 = 23.5%

Lara says that she can use this picture to show that two pairs of congruent angles and
one pair of corresponding congruent sides is enough information to prove that two
triangles are congruent. Is Lara correct?

Answers

Answer:

Bottom left

Step-by-step explanation:

Mark brainliest please

Yes, Lara is correct.

Congruent triangleTwo triangles are said to be congruent if all three corresponding sides are equal and all three corresponding angles are equal in measureTriangles are congruent when they have exactly the same three sides and exactly the same three angles.

How to solve this problem?

The steps are as follow:

Since there is a series of rigid motions that will match the triangles up exactly.Also, Lara is correct only if the corresponding congruent side is in between the two anglesThis would be "ASA" triangle congruceny which means Angle Side Angle congruceny

So Lara is correct

Learn more about Congruent triangle here:

https://brainly.com/question/1675117

#SPJ2

Can you please help me solve this step by step?

Answers

Answer:

2/3

Step-by-step explanation:

[tex]2 \frac{1}{4} : \frac{1}{2}[/tex] = [tex]\frac{9}{4} : \frac{1}{2}[/tex]

[tex]\frac{\frac{9}{4} }{\frac{1}{2} }[/tex] = [tex]\frac{3}{x}[/tex]

3 * 1/2 = 9/4x

3/2 = 9/4 x

x = 3/2 ÷ 9/4 = 3/2 * 4/9 = 12/18 = 6/9 = 2/3

why no one helping me please help please please please please please​

Answers

Answer:

a) A

b) C and E

c) C, D and F

d) two

e) Equal

HELP ME PLSSSSSSSS I tryed to solvessss

Answers

Answer:

x≥-4

Step-by-step explanation:

what is the domain of f(x)

Answers

Answer:

Values of x

Step-by-step explanation:

The domain of a function is the set of all possible inputs for the function while the co-domain is the set of all possible outputs of the function.

In other words, domain is the set of x-values that you can put into any given equation while co-domain is the sex of f(x)-values that you get from substituting the values of x.

Hope it's clear

Will give brainliest answer

Answers

Answer: 2/5x to the second.

may I have the brainiest? pls

Find the points of intersection of the graphs involving the following pair of functions.

f(x)=2x^2 + 3x - 3 and g(x) = -x^2

Answers

Answer:

The point of intersection is [tex]( \frac{-1\pm\sqrt{5}}{2}, 0)[/tex]

Step-by-step explanation:

f(x) = 2x^2 + 3x - 3 and g(x) = - x^2

By equating them

2x^2 + 3x - 3 = -x^2

3x^2 + 3 x - 3 =  0

x^2 + x - 1 = 0

[tex]x^2 +x - 1 = 0 \\\\x = \frac{-1\pm\sqrt{5}}{2}[/tex]

Women's heights are normally distributed with a mean given by p = 63.6 in. and a standard deviation given by o = 2.5 in. (a) If 1' woiman is randomly selected, find the probability that her height is less than 67.4 in. Enter a number correct to 4 decimal places: (b): 1f 64 women are randomly selected, find the probability that they will have a mean height less than 67.4 in. Enter a number correct to 4 decimal places:​

Answers

Step-by-step explanation:

I am sorry question samajh Nahin a Raha question dijiye

Use the formula for the volume of a cube given by
V = s3
where s is the length of one of the sides. This formula yields the volume in cubic units.
Suppose a certain sugar cube has a side that measures 5/9 inches per side. What is the volume of this sugar cube (in in3)? Round the result to three decimal places.

Answers

Answer:

The volume of the cube is 0.171 cubic inches.

Step-by-step explanation:

The volume of a cube given by :

[tex]V=s^3[/tex]

Where

s is the length of one of the sides.

We need to find the volume of the sugar cube if its side is 5/9 inches per side.

So,

[tex]V=(\dfrac{5}{9})^3\\\\V=0.171\ inches^3[/tex]

So, the volume of the cube is 0.171 cubic inches.

it is estimated that 50% of emails are spam emails. Some software has been applied to filter these spam emails before they reach your inbox. A certain brand of software claims that it can detect 99% of spam emails and the probability for a flase positive is 5%. What is the probability that an email is detected as spam

Answers

Answer:

0.52 = 52% probability that an email is detected as spam.

Step-by-step explanation:

Probability that an email is detected as spam:

99% of 50%(are spam).

5% of 100 - 50 = 50%(false positives, that is, e-mails that are not spam but are detected as spams).

What is the probability that an email is detected as spam?

[tex]p = 0.99*0.5 + 0.05*0.5 = 0.52[/tex]

0.52 = 52% probability that an email is detected as spam.

1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 24 customers per hour or 0.4 customers per minute.
a. What is the mean or expected number of customers that will arrive in a five-minute period?
b. Assume that the Poisson probability distribution can be used to describe the arrival process. Use the arrival rate in part (a) and compute the probabilities that exactly 0, 1, 2, and 3 customers will arrive during a five-minute period.
c. Delays are expected if more than three customers arrive during any five-minute period. What is the probability that delays will occur?
2. In the Willow Brook National Bank waiting line system (see Problem 1), assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 36 customers per hour, or 0.6 customers per minute. Use the exponential probability distribution to answer the following questions:
a. What is the probability that the service time is one minute or less?
b. What is the probability that the service time is two minutes or less?
c. What is the probability that the service time is more than two minutes?

Answers

Answer:

1.

a. 2

b. 0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.

c. 0.1428 = 14.28% probability that delays will occur.

2.

a. 0.4512 = 45.12% probability that the service time is one minute or less.

b. 0.6988 = 69.88% probability that the service time is two minutes or less.

c. 0.3012 = 30.12% probability that the service time is more than two minutes.

Step-by-step explanation:

Poisson distribution:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

Exponential distribution:

The exponential probability distribution, with mean m, is described by the following equation:

[tex]f(x) = \mu e^{-\mu x}[/tex]

In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.

The probability that x is lower or equal to a is given by:

[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]

Which has the following solution:

[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]

The probability of finding a value higher than x is:

[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]

Question 1:

a. What is the mean or expected number of customers that will arrive in a five-minute period?

0.4 customers per minute, so for 5 minutes:

[tex]\mu = 0.4*5 = 2[/tex]

So 2 is the answer.

Question b:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-2}*2^{0}}{(0)!} = 0.1353[/tex]

[tex]P(X = 1) = \frac{e^{-2}*2^{1}}{(1)!} = 0.2707[/tex]

[tex]P(X = 2) = \frac{e^{-2}*2^{2}}{(2)!} = 0.2707[/tex]

[tex]P(X = 3) = \frac{e^{-2}*2^{3}}{(3)!} = 0.1805[/tex]

0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.

Question c:

This is:

[tex]P(X > 3) = 1 - P(X \leq 3)[/tex]

In which:

[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]

The values we have in item b, so:

[tex]P(X \leq 3) = 0.1353 + 0.2707 + 0.2707 + 0.1805 = 0.8572[/tex]

[tex]P(X > 3) = 1 - P(X \leq 3) = 1 - 0.8572 = 0.1428[/tex]

0.1428 = 14.28% probability that delays will occur.

Question 2:

[tex]\mu = 0.6[/tex]

a. What is the probability that the service time is one minute or less?

[tex]P(X \leq 1) = 1 - e^{-0.6} = 0.4512[/tex]

0.4512 = 45.12% probability that the service time is one minute or less.

b. What is the probability that the service time is two minutes or less?

[tex]P(X \leq 2) = 1 - e^{-0.6(2)} = 1 - e^{-1.2} = 0.6988[/tex]

0.6988 = 69.88% probability that the service time is two minutes or less.

c. What is the probability that the service time is more than two minutes?

[tex]P(X > 2) = e^{-1.2} = 0.3012[/tex]

0.3012 = 30.12% probability that the service time is more than two minutes.

A bottle maker believes that 23% of his bottles are defective. If the bottle maker is accurate, what is the probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%

Answers

Answer:

0.9802 = 98.02% probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

A bottle maker believes that 23% of his bottles are defective.

This means that [tex]p = 0.23[/tex]

Sample of 602 bottles

This means that [tex]n = 602[/tex]

Mean and standard deviation:

[tex]\mu = p = 0.23[/tex]

[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.23*0.77}{602}} = 0.0172[/tex]

What is the probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%?

p-value of Z when X = 0.23 + 0.04 = 0.27 subtracted by the p-value of Z when X = 0.23 - 0.04 = 0.19.

X = 0.27

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.27 - 0.23}{0.0172}[/tex]

[tex]Z = 2.33[/tex]

[tex]Z = 2.33[/tex] has a p-value of 0.9901

X = 0.19

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.19 - 0.23}{0.0172}[/tex]

[tex]Z = -2.33[/tex]

[tex]Z = -2.33[/tex] has a p-value of 0.0099

0.9901 - 0.0099 = 0.9802

0.9802 = 98.02% probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%

5. Lisa has a cubed-shaped box with a
volume of 512 cm. If Lisa fills the box
with 1-cubic centimeter blocks, how
many blocks make up each layer?

Answers

I can’t see it problem sorry

Answer:

64

Step-by-step explanation:

[tex]\sqrt[3]{512} = 8\\8x8 = 64[/tex]

SECTION B
Answer ALL questions. Write your answers in the spaces provided.
1 Data set A has a median value of 3.1
Here is data set B.
14
-9
28
-38
-13
-2
(a) Write a statement to compare the median values of the two sets of data.
(2)

Answers

Answer: The median value of data set B is -5.5, which is less than the median value of 3.1 in dataset A.

Step-by-step explanation:

Order the dataset from least to greatest:

-38 → -13 → -9 → -2 → 14 → 28

Then find the values that lies in the middle:

-38 → -13 → -9 → -2 → 14 → 28

Since there are 2 values, find the average of those 2 values:

[tex]\frac{-9+(-2)}{2} =\frac{-11}{2} =-5.5[/tex]

The median value = -5.5.

The median value of data set B is -5.5, which is less than the median value of  3.1 in dataset A.


Algebraically show that each of the given combinations are equivalent to the given functions.
h(x) + j(x) is equivalent to k(x) given:

h(x) = 2x – 3;j(x) = - 4x + 6; k(x) = – 2x + 3

h(x) + j(2) =

Is h(x) + j(x) equivalent to k(x)? yes

Answers

Answer:

YES, they are equal

Step-by-step explanation:

Given the expressions

h(x) = 2x – 3;j(x) = - 4x + 6; k(x) = – 2x + 3

h(x) + j(x) = 2x – 3 + (-4x + 6)

h(x) + j(x) =  2x - 3 -4x + 6

h(x) + j(x) = 2x - 4x -3 + 6

h(x) + j(x) = -2x + 3 = k(x)

This shows that h(x) + j(x) =  k(x)

(x + 3)(x + 7) ≡ x2 + ax + 21

Answers

The answer is c. Hope this helps

Test the claim that the mean GPA of night students is larger than the mean GPA of day students at the 0.10 significance level. The null and alternative hypothesis would be: H 0 : p N ≥ p D H 1 : p N < p D H 0 : p N ≤ p D H 1 : p N > p D H 0 : p N = p D H 1 : p N ≠ p D H 0 : μ N ≤ μ D H 1 : μ N > μ D H 0 : μ N ≥ μ D H 1 : μ N < μ D H 0 : μ N = μ D H 1 : μ N ≠ μ D The test is: two-tailed right-tailed left-tailed The sample consisted of 30 night students, with a sample mean GPA of 3.34 and a standard deviation of 0.02, and 30 day students, with a sample mean GPA of 3.32 and a standard deviation of 0.08. The test statistic is: (to 2 decimals) Use the conservative degree of freedoms. The p-value is: (to 2 decimals) Based on this we: Reject the null hypothesis Fail to reject the null hypothesis

Answers

Answer:

H0 : μN ≤ μD

H1 : μN > μD

Right tailed

Test statistic = 1.33

Pvalue = 0.097

Fail to reject the Null

Step-by-step explanation:

H0 : μN ≤ μD

H1 : μN > μD

The test is right tailed ; culled from the direction of the greater than sign ">"

Night students :

n1 =30 x1= 3.34 s1 = 0.02

Day students:

n2 = 30 x2 = 3.32 s2 = 0.08

The test statistic :

(x1 - x2) / √(s1²/n1) + (s2²/n2)

T= (3.34 - 3.32) / √(0.02²/30) + (0.08²/30)

T = 0.02 / 0.0150554

Test statistic = 1.328

Using the conservative approach ;

df = Smaller of n1 - 1 or n2 - 1

df = 30 - 1 = 29

Pvalue(1.328, 29) = 0.097

At α = 0.10

Pvalue < α ; Hence, we reject H0 ; and conclude that there is significant evidence that GPA of night student is greater than GPA of day student

What is the answer??

Answers

Answer:

Step-by-step explanation:

Let AC = x

AB - AC = 4 cm

AB = 4 +x  ----------------(I)

Pythagorean theorem

AB² + AC² =BC²

(4 + x)² + x² = 9²

Use the identity (a + b)² = a² + 2ab + b² where a = 4 & b = x

4² +2*4*x  +x² + x²= 81

16 + 8x + 2x² = 81

2x² + 8x + 16 - 81 = 0

2x² + 8x - 65= 0

a = 2 ; b = 8 ; c = -65

D = b² - 4ac

   = 8² - 4*2*(-65)

  = 64 +  520

D = 584

√D = √584 = 24.16

[tex]x=\frac{-b+\sqrt{D}}{2a} \ or \ x =\frac{-b-\sqrt{D}}{2a}\\\\x= \frac{-8+24.16}{2*2} \ or \ x = \frac{-8-24.6}{2*2}[/tex]   {Ignore this as it is negative.}

x = 16.16/4

x = 4.04

AC = 4.04 Cm

AB = 4 + 4.04 = 8.04 cm

Area of triangle ABC = [tex]\frac{1}{2}* base * height[/tex]

                                   [tex]=\frac{1}{2}*4.04 *8.04\\\\= 2.02 * 8.04[/tex]

                                   = 16.24 sq.cm

PLEEEASEEEE HEEELPPP!!!​

Answers

Answer: About 72%

Step-by-step explanation:

It's a conditional probability.

(Number of graduates on financial aid)/(Number of graduates)

[tex]\frac{1879}{2610} =0.7199[/tex]

0.7199 = 71.99% ≈ 72%

solve the quadratic equation x²+x-2​

Answers

Step-by-step explanation:

ii hope this will help you

please mark me as brinalist friend

Answer:

x = 1

x = -2

Step-by-step explanation:

Hello!

We can solve the quadratic by factoring the equation.

Standard Form of a Quadratic: [tex]ax^2 + bx + c = 0[/tex]

Given our equation: [tex]x^2 + x - 2 = 0[/tex]

a = 1b = 1c = -2

Find two numbers that multiply up to "ac" but add up to "b". The two numbers are 2 and -1. Expand x into 2x and -1x.

Factor by Grouping[tex]x^2 + x - 2 = 0[/tex][tex]x^2 + 2x - x - 2 = 0[/tex][tex]x(x + 2) -1(x + 2) = 0[/tex][tex](x - 1)(x + 2) = 0[/tex]

Set each factor to 0 and solve for x:

[tex]x - 1 = 0\\x = 1[/tex]

[tex]x + 2 = 0\\x = -2[/tex]

The solutions for x are 1 and -2.

Points A, B, C, and D lie on a line in that order. If AD/AC = 2/1 and AD/AB = 3/1, what is the value of AC/BD?

Answers

9514 1404 393

Answer:

  3/4

Step-by-step explanation:

It might be easier to start by expressing the ratios with AD as the denominator.

  AD/AC = 2/1   ⇒   AC/AD = 1/2

  AD/AB = 3/1   ⇒   AB/AD = 1/3

From the latter, we have ...

  (AD -AB)/AD = 1 -1/3 = 2/3 = BD/AD

Then the desired ratio is ...

  AC/BD = (AC/AD)/(BD/AD) = (1/2)/(2/3) = (3/6)/(4/6)

  AC/BD = 3/4

is this a direct variation

y=2x + 3

pls give an explanation if you don’t have one still pls give an answer

Answers

Answer:

No.

Step-by-step explanation:

y/x has to be the same number no matter what except at point (0 0) which it must also include for it to be a direct variation.

*y=2x+3 is not a direct variation because you can not write it as y/x=k where k is some constant number. If we were y=2x, then yes since y/x=2.

*You could also take two points and see if they are proportional. That is, you can see if y2/x2 gives the same value as y1/x1 where (x1,y1) and (x2,y2) are points on the line y=2x+3. This must work for every pair of points on the linear relation except at x=0 (where you would or should have y=0 if it is directly proportional).

Let's try it out. If x=1, then y=2(1)+3=5.

5/1=5

If x=2, then y=2(2)+3=7

7/2=3.5

As you can see 5 doesn't equal 3.5.

*For it to be a direct variation, it also must contain the point (0,0) and be a diagonal line when graphed. It can also be written in form y=kx where k is a constant number. This fails two of the the things I mentioned. It doesn't contain point (0,0) because y=2(0)+3=3 not 0. It cannot be written in form y=kx because of the plus 3.

If it were y=2x, then the answer would be yes.

ABCD-EFGH what does y=?

Answers

Answer:

y = 3

Step-by-step explanation:

Given that the shapes are similar then the ratios of corresponding sides are equal, that is

[tex]\frac{AB}{EF}[/tex] = [tex]\frac{CD}{GH}[/tex] , substitute values

[tex]\frac{3}{2}[/tex] = [tex]\frac{4.5}{y}[/tex] ( cross- multiply )

3y = 9 ( divide both sides by 3 )

y = 3

The distribution of the annual incomes of a group of middle management employees approximated a normal distribution with a mean of $38,000 and a standard deviation of $1,000. About 68 percent of the incomes lie between what two incomes

Answers

Answer:

68% is a special

value for these problems

empirical rule suggests ± 1 standard deviation

z = (x - μ)/σ

1 = (x - 38000)/1000

Between $37,000 and $39,000

Step-by-step explanation:

Other Questions
Write 2 x 8 x 64 in index notation with the smallest base. Find the length of side xx in simplest radical form with a rational denominator. what is the correct answer to my question ? Does direction matter when determining distance?yesno __________ benchmark and monitor the status of key system files and detect when an intruder creates, modifies, or deletes monitored files. Se observa gente_____de la oficinaa. deb. porc. alrededor A small plane tows a glider at constant speed and altitude. If the plane does 2.00 * 105 J of work to tow the glider 145 m and the tension in the tow rope is 2560 N, what is the angle between the tow rope and the horizontal A $1,000 par value bond pays interest of $35 each quarter and will mature in 10 years. If your simple annual required rate of return is 12 percent with quarterly compounding, how much should you be willing to pay for this bond Cai wants to buy cherries and apples to make a fruit tart. Cherries cost $3.75 perpound and apples cost $2.25 per pound. How much does he spend if he buys 2pounds of cherries and 1.5 pounds of apples? How much does he spend if he buys xpounds of cherries and y pounds of apples? protid khng phi l thnh phn ca Suppose the price level reflects the number of dollars needed to buy a basket of goods containing one cup of tea, one biscuit, and one magazine. In year one, the basket costs $7.00. In year two, the price of the same basket is $8.00. From year one to year two, there isinflation at an annual rate of_____________ . In year one, $42.00 will buy baskets, and in year two, $42.00 will buy baskets. This example illustrates that, as the price level rises, the value of money___________ . Read the sentences and match each sentence the correct word or words that complete the sentence or that answer the question.Corres conmigo esta noche a las 8?Me encantara almorzar con usted, seora Mart. ________?________ quin vives: tus padres o tus abuelos?Options:A) Puedo a las 20 horas.B) ConC) Le gustaraD) Tengo novia. Claro que no! How does humanities relate to the following words: human, I, Ties? A 5 kg object is moving in a straight-line with an initial speed of v m/s. It takes 13 s for the speed of the object to increase to 13 m/s and it kinetic energy increases at a rate of 15 J/s. What is the initial speed v (in m/s)? Write three of the top ten U.S. states in terms of the percentage of Spanish-speaking people that live there. Write the names in Spanish where possible. State the domain & range! EH is a diameter of D. The measure of ef is (10x+ 8) and the measure of gh is (11x). Determine the values what is photo synthesis The white triangle drawn on the road sign in the picture has a helght of 8" and a base of 5". The red rim around the edge adds another Inch to each dimension making the base of the larger triangle 12 inches. Ignoring the white edge around the very outside, what is the area of the red border? (Hint: find the area of the whole triangle and subtract the area of the smaller triangle inside it. Consider the transfer function a. By rewriting Eq. (7.283) in the form find a series realization of as a cascade of two first-order systems. b. Using a partial-fraction expansion of , find a parallel realization of . c. Realize in control canonical form.