The half-life of a radioactive substance is 20 years. If you start with some amount of this substance, what fraction will remain in 180 years?
Answer:
1/512
Step-by-step explanation:
Let staring fraction = x
Half-life = 20 years ; this is the time taken for an element to decrease to half of its original size
Hence,
After 20 years - - - > x/2
After 40 years - - - - > x/2 ÷ 2 = x/2 * 1/2 = x /4
After 60 years - - - - > x/4 ÷ 2 = x/4 * 1/2 = x/8
After 80 years - - - - -> x/8 ÷ 2 = x/8 * 1/2 = x / 16
After 100 years - - - > x/16 * 1/2 = x/32
After 120 years - - - - > x/32 * 1/2 = x/64
After 140 years - - - - -> x / 64 * 1/2 = x / 128
After 160 years - - - - - > x / 128 * 1/2 = x/256
After 180 years - - - - > x/256 * 1/2 = x / 512
Hence, the fraction after 180 years = 1/512
write your answer as an integer or as a decimal rounded to the nearest tenth
Answer:
FH ≈ 6.0
Step-by-step explanation:
Using the sine ratio in the right triangle
sin49° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{FH}{FG}[/tex] = [tex]\frac{FH}{8}[/tex] ( multiply both sides by 8 )
8 × sin49° = FH , then
FH ≈ 6.0 ( to the nearest tenth )
Answer:
6
Step-by-step explanation:
sin = opposite/hypotenuse
opposite = sin * hypotenuse
sin (49) = 0,75471
opposite = 0,75471 * 8 = 6,037677 = 6
HELPP plz don't send a file whats the answer and explanation plz if you can
Answer:
5/0 is not a rational number
Step-by-step explanation:
you cant divide by 0
Find the local linear approximation L(x) of the function f(x) = 5−x^2 at x = 2.
Use this to estimate f(2.1).
Answer:
L(x)=-4x+9
L(2.1)=0.6
Step-by-step explanation:
It's asking us to find the tangent line to curve f(x) = 5−x^2 at x = 2.
Theb use this to estimate f(2.1).
To find slope of tangent line, we must differentiate and then plug in 2 for x.
f'(x)=0-2x by constant and power rule.
f'(x)=-2x
So the slope of the tangent line is -2(2)=-4.
A point on this tangent line shared by the curve is at x=2. We can find it's corresponding y-value using f(x)=5-x^2.
f(2)=5-(2)^2
f(2)=5-4
f(2)=1
So let's rephrase the question a little.
What's the equation for a line with slope -4 and goes through point (2,1).
Point-slope form y-y1=m(x-x1) where m is slope and (x1,y1) is a point on the line.
Plug in our information: y-1=-4(x-2).
Distribute: y-1=-4x+8
Add 1 on both sides: y=-4x+9
Let's call this equation L(x), an expression to approximate value for f near x=2.
L(x)=-4x+9
Now the appropriation at x=2.1:
L(2.1)=-4(2.1)+9
L(2.1)=-8.4+9
L(2.1)=0.6
If we did plug in 2.1 into given function we get 5-(2.1)^2=0.59 . This is pretty close to our approximation above.
Select the correct answers in the table.
Rachel enjoys exercising outdoors. Today she walked 5 2/3 miles in 2 2/3 hours. What is Rachel’s unit walking rate in miles per hour and in hours per mile?
A popular beach erodes 4 inches per year on average.
An eroding beach.
A. How many years will it take for the coastline to erode one foot?
Answer:
3 years
Step-by-step explanation:
4 inches per year on average
1 foot = 12 inches
12 divided by 4 equals 3
therefore it is 3 years
Người ta chiếu xạ liều 3000 Rơn ghen vào một quần thể ruồi dấm ở thế hệ F1: Chiếu xạ 1000 con ruồi dấm không cho ăn đường thì có 80 con bị đột biến và chiếu xạ 1000 con ruồi dấm có cho ăn đường thì có 120 con bị đột biến. Cho ăn đường có ảnh hưởng đến tỉ lệ đột biến của ruồi giấm không, với mức ý nghĩa 5%? Giá trị kiểm định là
Answer:
gggggggggggggggggggggrrrrrrrrrrrttyuuiiiii
12/1,000 into decimal
0.012 is the answer!
I hope this helps you out! :D
[tex]\\ \sf\longmapsto \dfrac{12}{1000}[/tex]
1000 has 3zeros hence decimal will go 3 points left[tex]\\ \sf\longmapsto 0.012[/tex]
More:-
[tex]\\ \sf\longmapsto \dfrac{1}{10}=0.1[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{100}=0.01[/tex]
The segments shown below could form a triangle.
A
C
7
9
12
B
А
a
A. True
B. False
Answer:
TRUE
Step-by-step explanation:
I SEEN SOME ONE ELSE WIT 5 STARS SAY SO(:
The given segment can form triangle. Therefore, the given statement is true.
What is triangle?A polygon has three edges as well as three vertices is called a triangle. It's one of the fundamental geometric shapes. In Euclidean geometry, each and every three points that are not collinear produce a distinct triangle and a distinct plane. In other words, every triangle was contained in a plane, and there is only single plane that encompasses that triangle.
All triangles are enclosed in a single plane if all of geometry is the Euclidean plane, however this is no longer true in higher-dimensional Euclidean spaces. Unless when otherwise specified, this article discusses triangles within Euclidean geometry, namely the Euclidean plane. The given segment can form triangle.
Therefore, the given statement is true.
To know more about triangle, here:
https://brainly.com/question/14712269
#SPJ7
Starting with a fresh bar of soap, you weigh the bar each day after you take a shower. Then you find the regression line for predicting weight from number of days elapsed. The slope of this line will be:__________.
Answer:
The slope will be negative
Step-by-step explanation:
The slope of the regression line tells us about the relationship or behavior of the dependent and independent variables. In the scenario above, where the weight is being compared with the number of days elapsed. What is expected of the weight and quantity of a bar soap each time it is used for a shower is that it will decrease in weight. Therefore, as the number of days increases, and hence, number of showers rise, the weight of soap will decrease. Hence, we'll obtain a negative slope, one in which the increase in a variable leads to decrease in the other.
prove that 2^n+1>(n+2).sin(n)
Step-by-step explanation:
F(n)=|sin(n)|+|sin(n+1)|
then
F(n+π)=|sin(n+π)|+|sin(n+π+1)|=|sin(n)|+|sin(n+1)|=F(n)
and
F(π−n)=|sin(π−n)|+|sin(π−n+1)|=|sinn|+|sin(n−1)|≠F(n)
so we must prove when n∈(0,π), have
F(n)>2sin12
when n∈(0,π−1),then
F(n)=sinn+sin(n+1)=sinn(1+cos1)+sin1cosn
and n∈(π−1,π),then
F(n)=sinn−sin(n+1)
How prove it this two case have F(n)>2sin12? Thank you
and I know this well know inequality
|sinx|+|sin(x+1)|+|sin(x−1)|≥2sin1,x∈R
Simplify the following expression
Answer:
[tex]\frac{98p^{6}}{q}[/tex]
Step-by-step explanation:
Distribute the exponents
[tex](\frac{(7^{-2}p^{-6}q^{-8})}{2q^{-9}} )^{-1}[/tex]
[tex](\frac{q}{98p^{6}} )^{-1}[/tex]
Distribute the -1
[tex]\frac{98p^{6}}{q}[/tex]
Algebra word problem plz help me
Step-by-step explanation:
here's the answer to your question
Shawn has 4 times as many candies as Jason, who has a third as many candies as
lan. If Shawn has 64 candies, how many candies does Ian have?
The polygons in each pair are similar. Find the missing side length.
Let missing side be x
If both polygons are similar
[tex]\\ \sf\longmapsto \dfrac{3}{4}=\dfrac{18}{x}[/tex]
[tex]\\ \sf\longmapsto 3x=4(18)[/tex]
[tex]\\ \sf\longmapsto 3x=72[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{72}{3}[/tex]
[tex]\\ \sf\longmapsto x=24[/tex]
Please help me with this on the picture
9514 1404 393
Answer:
(-5, 4)
Step-by-step explanation:
The inside corner moves from (2, -2) to (-3, 2). That is 5 is subtracted from the x-coordinate, and 4 is added to the y-coordinate. (x, y) ⇒ (x -5, y +4)
The translation vector can be written horizontally as (-5, 4), or vertically as ...
[tex]\displaystyle\binom{-5}{4}[/tex]
please helpppp i need it by tonight its very important
Answer:
m<1=145
m<2=35
m<3=35
Step-by-step explanation:
measure one is supplementary(the angles add to 180) to measure four.
so we do 180-35=145
measure 2 is congruent to measure four because they are corresponding angles
so measure 2=35
and measure 3 is also congruent to measure 4 because the are corresponding angles
so m<3=35
A car insurance company has determined that6% of all drivers were involved in a car accident last year. If14drivers are randomly selected, what is the probability of getting at most 3 who were involved in a car accidentlast year
Answer:
[tex]P(x \le 3) = 0.9920[/tex]
Step-by-step explanation:
Given
[tex]p = 6\%[/tex] --- proportion of drivers that had accident
[tex]n = 14[/tex] -- selected drivers
Required
[tex]P(x \le 3)[/tex]
The question is an illustration of binomial probability, and it is calculated using:
[tex]P(x ) = ^nC_x * p^x * (1 - p)^{n-x}[/tex]
So, we have:
[tex]P(x \le 3) = P(x = 0) +P(x = 1) +P(x = 2) +P(x = 3)[/tex]
[tex]P(x=0 ) = ^{14}C_0 * (6\%)^0 * (1 - 6\%)^{14-0} = 0.42052319017[/tex]
[tex]P(x=1 ) = ^{14}C_1 * (6\%)^1 * (1 - 6\%)^{14-1} = 0.37578668057[/tex]
[tex]P(x=2 ) = ^{14}C_2 * (6\%)^2 * (1 - 6\%)^{14-2} = 0.15591149513[/tex]
[tex]P(x=3 ) = ^{14}C_3 * (6\%)^3 * (1 - 6\%)^{14-3} = 0.03980719024[/tex]
So, we have:
[tex]P(x \le 3) = 0.42052319017+0.37578668057+0.15591149513+0.03980719024[/tex]
[tex]P(x \le 3) = 0.99202855611[/tex]
[tex]P(x \le 3) = 0.9920[/tex] -- approximated
Please help explanation if possible
Answer:
18.84 feet. let me know if you have ay other questions.
Step-by-step explanation:
The way to find the formula for circumference is kinda complicated so it is best to ust memorize the formula, which is 2πr. or 2 times pi times the radius.
Your problem gives you the formula, but instead of 2 and r in it you have d, which is the diameter.
The diameter of the circle is 2 times the radius, so that's why it is replaced.
the radius is the distance from the center fo the circle to one edge, and the diameter is the distance through the circle passing through its center. so it's the center to one end plus the center to another end. or r+r which is also 2r.
So d = 2r, so in this problem d =6 feet.
So now the formula πd = 3.14*6 feet = 18.84 feet
Jack’s backpack weighs 15 pounds. Fernando’s backpack weighs less than Jack’s. Which graph shows how much Fernando’s backpack can weigh?
Answer:
A
Step-by-step explanation:
c and d out of the question
b has its circle filled in meaning it could be 15lbs, which it's not
A correct answer by default
Answer:b
Step-by-step explanation: it has a filled in diamond which mean it's that...
The scatterplot shows the attendance at a pool for different daily high temperatures.
A graph titled pool attendance has temperature (degrees Fahrenheit) on the x-axis, and people (hundreds) on the y-axis. Points are at (72, 0.8), (75, 0.8), (77, 1.1), (82, 1.4), (87, 1.5), (90, 2.5), (92, 2.6), (95, 2.6), (96, 2.7). An orange point is at (86, 0.4).
Complete the statements based on the information provided.
The scatterplot including only the blue data points shows
✔ a strong positive
association. Including the orange data point at (86, 0.4) would
✔ weaken
the correlation and
✔ decrease
the value of r.
Answer:
✔ a strong positive
✔ weaken
✔ decrease
ED2021
Answer:
The scatterplot including only the blue data points shows
✔ a strong positive
association. Including the orange data point at (86, 0.4) would
✔ weaken
the correlation and
✔ decrease
the value of r.
Step-by-step explanation:
look at the image below
Answer:
201.1 km²
Step-by-step explanation:
Surface area of a sphere= 4πr², where r = radius
so,
4πr²
= 4×π×4²
= 64π
= 201.1 km² (rounded to the nearest tenth)
factorize : ( p- q ) cube
Answer:
[tex]( {p - q}^{3} ) \\ = {p}^{2} - 3 {p}^{2} q + 3p {q}^{2} - {q}^{3} [/tex]
Triangle ABL is an isosceles triangle in circle A with a radius of 11, PL = 16, and ∠PAL = 93°. Find the area of the circle enclosed by line PL and arc PL. Show all work and round your answer to two decimal places.
The area bounded by a chord and arc it intercepts is known as a segment of a circle segment of a circle
The area of the circle enclosed by line PL and arc PL is approximately 37.62 square units
The reason the above value is correct is as follows:
The given parameters in the question are;
The radius of the circle, r = 11
The length of the chord PL = 16
The measure of angle ∠PAL = 93°
Required:
The area of part of the circle enclosed by chord PL and arc PL
Solution:
The shaded area of the given circle is the minor segment of the circle enclosed by line PL and arc PL
The area of a segment of a circle is given by the following formula;
Area of segment = Area of the sector - Area of the triangle
Area of segment = Area of minor sector APL - Area of triangle APL
Area of minor sector APL:
Area of a sector = (θ/360)×π·r²
Where;
r = The radius of the circle
θ = The angle of the sector of the circle
Plugging in the the values of r and θ, we get;
Area of the minor sector APL = (93°/360°) × π × 11² ≈ 98.2 square units
Area of Triangle APL:
Area of a triangle = (1/2) × Base length × Height
Therefore;
The area of ΔAPL = (1/2) × 16 × 11 × cos(93°/2) ≈ 60.58 square units
Required shaded area enclosed by line PL and arc PL:
Therefore, the area of shaded segment enclosed by line PL and arc PL is found as follows;
Area of the required segment PL ≈ (98.2 - 60.58) square units = 37.62 square units
The area of the circle enclosed by line PL and arc PL ≈ 37.62 square units
Learn more about the finding the area of a segment can be found here:
https://brainly.com/question/22599425
The area of the circle enclosed by line segment PL and circle arc PL is 37.80 square units.
The calculation of the area between line segment PL and circle arc PL is described below:
1) Calculation of the area of the circle arc.
2) Calculation of the area of the triangle.
3) Subtracting the area found in 2) from the area found in 1).
Step 1:
The area of a circle arc is determined by the following formula:
[tex]A_{ca} = \frac{\alpha\cdot \pi\cdot r^{2}}{360}[/tex] (1)
Where:
[tex]A_{ca}[/tex] - Area of the circle arc.
[tex]\alpha[/tex] - Arc angle, in sexagesimal degrees.
[tex]r[/tex] - Radius.
If we know that [tex]\alpha = 93^{\circ}[/tex] and [tex]r = 11[/tex], then the area of the circle arc is:
[tex]A_{ca} = \frac{93\cdot \pi\cdot 11^{2}}{360}[/tex]
[tex]A_{ca} \approx 98.201[/tex]
Step 2:
The area of the triangle is determined by Heron's formula:
[tex]A_{t} = \sqrt{s\cdot (s-l)\cdot (s-r)^{2}}[/tex] (2)
[tex]s = \frac{l + 2\cdot r}{2}[/tex]
Where:
[tex]A_{t}[/tex] - Area of the triangle.
[tex]r[/tex] - Radius.
[tex]l[/tex] - Length of the line segment PL.
If we know that [tex]l = 16[/tex] and [tex]r = 11[/tex], then the area of the triangle is:
[tex]s = \frac{16+2\cdot (11)}{2}[/tex]
[tex]s = 19[/tex]
[tex]A_{t} = \sqrt{19\cdot (19-16)\cdot (19-11)^{2}}[/tex]
[tex]A_{t} \approx 60.399[/tex]
Step 3:
And the area between the line segment PL and the circle arc PL is:
[tex]A_{s} = A_{ca}-A_{t}[/tex]
[tex]A_{s} = 98.201 - 60.399[/tex]
[tex]A_{s} = 37.802[/tex]
The area of the circle enclosed by line segment PL and circle arc PL is 37.80 square units.
Convert 0.450 to a proper fraction
Answer:
9/20
Step-by-step explanation:
450/1000
this is not the answer, because it is not simplified
so here we have to find common factor and simplifying
________________________________________________
450/1000 is simplified to 9/20, and it can no longer be simplified.
five brothers of 4, 9, 11, 13 and 16 years respectively, receive an inheritance of 1,500,000, the will stipulated that that amount must be shared by the heirs so that, placed the shares in a bank, they would result in equal capitalized amounts, when each one reached 21, could raise his share. Knowing that the bank charges an interest rate of 9% per year, what is the amount of each share?
9514 1404 393
Answer:
Youngest to oldest:
160,406.86246,805.83293,230.01348,386.58451,170.72Step-by-step explanation:
At 9% interest per year, the present value of 1 at age 20 is ...
p(a) = 1.09^(a-20)
Adding the present values for the different ages, we get a total of about 2.35528984846. Dividing the inheritance by that amount gives the multiplier for each of the present value numbers. The result is the list of shares shown above. At age 20, each brother will inherit about 636,864.29.
__
Additional comment
This is the sort of question that suggests the use of a graphing calculator or spreadsheet for doing the tedious number crunching.
(We assume the bank pays 9% per year, rather than charges 9% per year.)
Give example to verify if the given statement is true or false
1) if two numbers are co-primes , at least one of them should be prime number.
Answer:
no
Step-by-step explanation:
if two numbers are co-prime that is not necessary that one of them must be a prime number
Factors and rewrite the expression 25x-15
Answer:
5(5x-3)
Step-by-step explanation:
The common factor in this expression is 5 so divide 5 to all the values
25/5=5
-15/5= -3
Put these values into parenthesis and leave the 5 on the left side and out of the parenthesis
5(5x-3)
Answer:
5(5x - 3)
Step-by-step explanation:
The greatest common factor here is 5. Divide each term by 5 and simplify.
25x/5 = 5x
15/5 = 3
Therefore, the answer is 5(5x - 3).
Find the greatest rational number r such that the ratios 8/15 ÷ r and 18/35 ÷ r are whole numbers?
The answer is "[tex]\bold{\frac{2}{105}}[/tex]", and the further calculation can be defined as follows:
When the "r" is the greatest common divisor for the two fractions.
So, we will use Euclid's algorithm:
[tex]\to \bold{(\frac{8}{15}) -(\frac{188}{35})}\\\\\to \bold{(\frac{8}{15} -\frac{188}{35})}\\\\\to \bold{(\frac{56-54}{105})}\\\\\to \bold{(\frac{2}{105})}\\\\[/tex]
this is [tex]\bold{(\frac{8}{15}) \ \ mod \ \ (\frac{18}{35})}[/tex]
we can conclude that the GCD for [tex]\bold{\frac{54}{105}}[/tex], when divided by [tex]\bold{\frac{2}{105}}[/tex], will be the remainder is 0. Rational numbers go from [tex]\bold{\frac{2}{105}}[/tex] with the latter being the highest.
So, the final answer is "[tex]\bold{\frac{2}{105}}[/tex]".
Learn more:
greatest rational number:brainly.com/question/16660879
After how many years, to the nearest whole year, will an investment of $100,000 compounded quarterly at 4% be worth
$213,022?
Provide your answer below:
9514 1404 393
Answer:
19 years
Step-by-step explanation:
The compound interest formula tells you the future value of principal P invested at annual rate r compounded n times per year for t years is ...
A = P(1 +r/n)^(nt)
Solving for t, we get ...
t = log(A/P)/(n·log(1 +r/n))
Using the given values, we find t to be ...
t = log(2.13022)/(4·log(1 +0.04/4)) ≈ 19.000
The investment will be worth $213,022 after 19 years.