Measures of angles ACB and AC are is m(ACB) = 64°, m(AC) = 146°
What is the measure of angle ACB?Given that m(AB) = 64° and m(ABC) = 73°, we can find the measures of m(ACB) and m(AC) using the properties of angles in a circle.
First, we know that the measure of a central angle is equal to the measure of the intercepted arc. In this case, m(ACB) is the central angle, and the intercepted arc is AB. Therefore, m(ACB) = m(AB) = 64°.
Next, we can use the property that an inscribed angle is half the measure of its intercepted arc. The angle ABC is an inscribed angle, and it intercepts the arc AC. Therefore, m(AC) = 2 * m(ABC) = 2 * 73° = 146°.
To summarize:
m(ACB) = 64°
m(AC) = 146°
These are the measures of angles ACB and AC, respectively, based on the given information.
Learn more about angles in circles
brainly.com/question/23247585
#SPJ11
n simple linear regression, r 2 is the _____.
a. coefficient of determination
b. coefficient of correlation
c. estimated regression equation
d. sum of the squared residuals
The coefficient of determination is often used to evaluate the usefulness of regression models.
In simple linear regression, r2 is the coefficient of determination. In statistics, a measure of the proportion of the variance in one variable that can be explained by another variable is referred to as the coefficient of determination (R2 or r2).
The coefficient of determination, often known as the squared correlation coefficient, is a numerical value that indicates how well one variable can be predicted from another using a linear equation (regression).The coefficient of determination is always between 0 and 1, with a value of 1 indicating that 100% of the variability in one variable is due to the linear relationship between the two variables in question.
To Know more about linear equation visit:
https://brainly.com/question/32634451
#SPJ11
characterize the likely shape of a histogram of the distribution of scores on a midterm exam in a graduate statistics course.
The shape of a histogram of the distribution of scores on a midterm exam in a graduate statistics course is likely to be bell-shaped, symmetrical, and normally distributed. The bell curve, or the normal distribution, is a common pattern that emerges in many natural and social phenomena, including test scores.
The mean, median, and mode coincide in a normal distribution, making the data symmetrical on both sides of the central peak.In a graduate statistics course, it is reasonable to assume that students have a good understanding of the subject matter, and as a result, their scores will be evenly distributed around the average, with a few outliers at both ends of the spectrum.The histogram of the distribution of scores will have an approximately normal curve that is bell-shaped, with most of the scores falling in the middle of the range and fewer scores falling at the extremes.
To know more about histogram visit :-
https://brainly.com/question/16819077
#SPJ11
Given f(x)=x^2-6x+8 and g(x)=x^2-x-12, find the y intercept of (g/f)(x)
a. 0
b. -2/3
c. -3/2
d. -1/2
The y-intercept of [tex]\((g/f)(x)\)[/tex]is (c) -3/2.
What is the y-intercept of the quotient function (g/f)(x)?To find the y-intercept of ((g/f)(x)), we first need to determine the expression for this quotient function.
Given the functions [tex]\(f(x) = x^2 - 6x + 8\)[/tex] and [tex]\(g(x) = x^2 - x - 12\)[/tex] , the quotient function [tex]\((g/f)(x)\)[/tex]can be written as [tex]\(\frac{g(x)}{f(x)}\).[/tex]
To find the y-intercept of ((g/f)(x)), we need to evaluate the function at (x = 0) and determine the corresponding y-value.
First, let's find the expression for ((g/f)(x)):
[tex]\((g/f)(x) = \frac{g(x)}{f(x)}\)[/tex]
[tex]\(f(x) = x^2 - 6x + 8\) and \(g(x) = x^2 - x - 12\)[/tex]
Now, let's substitute (x = 0) into (g(x)) and (f(x)) to find the y-intercept.
For [tex]\(g(x)\):[/tex]
[tex]\(g(0) = (0)^2 - (0) - 12 = -12\)[/tex]
For (f(x)):
[tex]\(f(0) = (0)^2 - 6(0) + 8 = 8\)[/tex]
Finally, we can find the y-intercept of ((g/f)(x)) by dividing the y-intercept of (g(x)) by the y-intercept of (f(x)):
[tex]\((g/f)(0) = \frac{g(0)}{f(0)} = \frac{-12}{8} = -\frac{3}{2}\)[/tex]
Therefore, the y-intercept of [tex]\((g/f)(x)\)[/tex] is [tex]\(-\frac{3}{2}\)[/tex], which corresponds to option (c).
Learn more about y-intercept of quotient function
brainly.com/question/30973944
#SPJ11