Answer:
C. <C is congruent to <Y
Step-by-step explanation:
to be AAS the angles need to be next to each other
Suppose 42% of the population has myopia. If a random sample of size 442 is selected, what is the probability that the proportion of persons with myopia will differ from the population proportion by less than 3%
Answer:
0.7994 = 79.94% probability that the proportion of persons with myopia will differ from the population proportion by less than 3%.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose 42% of the population has myopia.
This means that [tex]p = 0.42[/tex]
Random sample of size 442 is selected
This means that [tex]n = 442[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.42[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.42*0.58}{442}} = 0.0235[/tex]
What is the probability that the proportion of persons with myopia will differ from the population proportion by less than 3%?
Proportion between 0.42 + 0.03 = 0.45 and 0.42 - 0.03 = 0.39, which is the p-value of Z when X = 0.45 subtracted by the p-value of Z when X = 0.39.
X = 0.45
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.45 - 0.42}{0.0235}[/tex]
[tex]Z = 1.28[/tex]
[tex]Z = 1.28[/tex] has a p-value of 0.8997
X = 0.39
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.39 - 0.42}{0.0235}[/tex]
[tex]Z = -1.28[/tex]
[tex]Z = -1.28[/tex] has a p-value of 0.1003
0.8997 - 0.1003 = 0.7994
0.7994 = 79.94% probability that the proportion of persons with myopia will differ from the population proportion by less than 3%.
find the slope of a line perpendicular to the line below. y=2x+4
For the same set of observations on a specified dependent variable, two different independent variables were used to develop two separate simple linear regression models. A portion of the results is presented below.
Based on the results given above, we can conclude that:_______.
A. A prediction based on Model 1 is better than a prediction based on Model 2.
B. A prediction based on Model 2 is better than a prediction based on Model 1.
C. There is no difference in the predictive ability between Model 1 and Model 2.
D. There is not sufficient information to determine which of two models is superior for prediction purposes.
Answer:
A. A prediction based on Model 1 is better than a prediction based on Model 2.
Step-by-step explanation:
Given :
Model 1 :
R² = 0.92
s = 1.65
Model 2 :
R² = 0.85
s = 1.91
The Coefficient of determination of the first model is 0.92 which is greater than the coefficient of determination of the Second model, the coefficient of determination gives the proportion of variation in the dependent variable which is caused by the regression line. Hence, we can say a prediction based on Model 1 is better than a prediction based on Model 2 because a larger proportion of the variation in the dependent variable is predictable from the independent variable.
Use the appropriate substitutions to write down the first four nonzero terms of the Maclaurin series for the binomial (1+3x)^(-1/3)
Answer:
First term=1
Second term=-x
Third term=[tex]2x^2[/tex]
Fourth term =[tex]-\frac{28}{3!}x^3[/tex]
Step-by-step explanation:
We are given that function
[tex]f(x)=(1+3x)^{-1/3}[/tex]
We have to find the first four non zero terms of the Maclaurin series for the binomial.
Maclaurin series of function f(x) is given by
[tex]f(x)=f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2+\frac{1}{3!}f'''(0)x^3+....[/tex]
[tex]f(0)=(1+3x)^{\frac{-1}{3}}=1[/tex]
[tex]f'(x)=-\frac{1}{3}(1+3x)^{-\frac{4}{3}}(3)=-(1+3x)^{-\frac{4}{3}}[/tex]
[tex]f'(0)=-1[/tex]
[tex]f''(x)=\frac{4}{3}\times 3 (1+3x)^{-\frac{7}{3}}[/tex]
[tex]f''(0)=4[/tex]
[tex]f'''(x)=-4\times \frac{7}{3}\times 3(1+3x)^{-\frac{10}{3}}[/tex]
[tex]f'''(0)=-28[/tex]
Substitute the values we get
[tex](1+3x)^{-\frac{1}{3}}=1-x+\frac{4}{2!}x^2+\frac{-28}{3!}x^3+...[/tex]
[tex](1+3x)^{-\frac{1}{3}}=1-x+2x^2+\frac{-28}{3!}x^3+...[/tex]
First term=1
Second term=-x
Third term=[tex]2x^2[/tex]
Fourth term =[tex]-\frac{28}{3!}x^3[/tex]
The degree of polynomial 8x^2y^2-5x^2y^2-x^3y is
Answer:
The degree is the highest number exponent....
that is hard to see in your question...
it does appear to be a 2?
Step-by-step explanation:
write expanded notion of 752 863?
Answer:
7 hundred thousands, 5 ten thousands, 2 thousands, 8 hundreds, 6 tens, 3 ones
Step-by-step explanation:
to write a number in expanded notation all you need to do is write out the number in words.
Help please I don’t get may I please have help with this
Answer:
[tex]1)\:2\frac{2}{3} ft[/tex]
[tex]2)\:4[/tex]
[tex]3)\:\frac{20}{3} ft^{2}[/tex]
[tex]4)\:10\frac{2}{3} ft^{2}[/tex]
------------------------
hope it helps...
have a great day!!
find the slope of the tangent line [tex]m_{tan}[/tex] = f'(a) and then find the equation of the tangent line to f at x = a
f(x) = [tex]\frac{10}{x}[/tex] ; a = 3
9514 1404 393
Answer:
10x +9y = 60
Step-by-step explanation:
The equation for the tangent line at a point is ...
y -f(a) = f'(a)(x -a)
For the given function,
f(x) = 10/x
The derivative is ...
f'(x) = -10/x^2
Then the equation of the tangent line is ...
y -10/3 = -10/9(x -3) . . . . equation of the tangent line (point-slope form)
Clearing fractions, we have ...
9y -30 = -10(x -3) = -10x +30
10x +9y = 60 . . . . . equation in standard form
The function in the table is exponential:
True
False
Answer:
true ...
believe it or not there is an exponential sequence that can make that
result
f(x) = [tex]2^{(2(x+2) -1)}[/tex]
x /// 2(x+2) -1
-1 /// 1
0 /// 3
1 /// 5
2 /// 7
[tex]2^{1} = 2\\2^{3} = 8\\\\2^{5} = 32\\\\2^{7 = 128\\\\[/tex]
Step-by-step explanation:
Consider the probability that no less than 37 out of 295 cell phone calls will be disconnected. Choose the best description of the area under the normal curve that would be used to approximate binomial probability.
a. Area to the right of 36.5
b. Area to the right of 37.5
c. Area to the left of 36.5
d. Area to the left of 37.5
e. Area between 36.5 and 37.5
==========================================================
Explanation:
The phrasing "no less than" means the same as "at least".
Saying "at least 37" means 37 is the lowest we can go.
If x is the number of disconnected calls, then [tex]x \ge 37[/tex] and we want to find the probability of this happening (the max being 295).
We could use the binomial distribution to find the answer, but that would require adding 295-37+1 = 259 different values which could get tedious. So we could use the normal approximation to make things relatively straight forward.
Assuming this binomial meets the requirements of the normal approximation, then we'd look under the normal curve for the area to the right of 36.5; which is why the answer is choice A.
Why 36.5 and not 37? This has to do with the continuity correction factor when translating from a discrete distribution (binomial) to a continuous one (normal).
If we used 37, then we'd be missing out on the edge case. So we go a bit beyond 37 to capture 36.5 instead. It's like a fail safe to ensure we do account for that endpoint of 37. It's like adding a buffer or padding.
------------
Side notes:
Choice B would be the answer if we wanted to excluded 37 from the group, ie if we wanted to calculate [tex]P(x > 37)[/tex] instead of [tex]P(x \ge 37)[/tex]. So we're moving in the opposite direction of choice A to avoid that edge case. We go with "right" instead of "left" since this is what the inequality sign says.Private nonprofit four-year colleges charge, on average, $26,208 per year in tuition and fees. The standard deviation is $7,040. Assume the distribution is normal. Let X be the cost for a randomly selected college. Round all answers to 4 decimal places where possible.
a. What is the distribution of X? X ~ N(
26208
Correct,
7040
Correct)
b. Find the probability that a randomly selected Private nonprofit four-year college will cost less than 22,924 per year.
c. Find the 60th percentile for this distribution. $
(Round to the nearest dollar.)
Answer:
#########
Step-by-step explanation:
Kobe is a basketball player. He is able to make a free throw 70% of the time. What is the probability that Kobe makes his 10th free throw on his 14th shot
Answer:
0.1636 = 16.36% probability that Kobe makes his 10th free throw on his 14th shot
Step-by-step explanation:
For each free throw, there are only two possible outcomes. Either he makes it, or he misses. The probability of making a free throw is independent of any other free throw, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
He is able to make a free throw 70% of the time.
This means that [tex]p = 0.7[/tex]
What is the probability that Kobe makes his 10th free throw on his 14th shot?
9 of his first 13(P(X = 9) when n = 13), and then the 10th with 0.7 probability.
Thus
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 9) = C_{13,9}.(0.7)^{9}.(0.3)^{3} = 0.2337[/tex]
0.7*0.2337 = 0.1636
0.1636 = 16.36% probability that Kobe makes his 10th free throw on his 14th shot
GIVING OUT BRAINLIEST IF GIVEN AN ANSWER WITH THOUROUGH EXPLANATION AND NOT JUST AN ANSWER! THANKS!
During the first part of a 6-hour trip, you travel 240 miles at an average speed of r miles per hour. For the next 72 miles of the trip, you
increase your speed by 10 miles per hour. What were
your two average speeds?
9514 1404 393
Answer:
50 mph for 4.8 hours60 mph for 1.2 hoursStep-by-step explanation:
One way to write the relationship between time, speed, and distance is ...
time = distance/speed
For the first part of the trip, the time is ...
t1 = 240/r
For the second part of the trip, the time is ...
t2 = 72/(r+10)
The total time is 6 hours, so we have ...
t1 +t2 = 6
240/r +72/(r+10) = 6
We can simplify this a bit by multiplying by (r)(r+10)/6 to get ...
40(r+10) +12(r) = r(r+10)
r² -42r -400 = 0 . . . . . . . . subtract the left side and collect terms
(r -50)(r +8) = 0 . . . . . . . . factor
r = 50 . . . . . the positive solution of interest.
The two average speeds were 50 mph and 60 mph.
What was the original price of the car? Show all work
Answer:
I got u, it is litearly 16540/83.8 = $19737.5
Step-by-step explanation:
its very simple sincen 100-16.2=83.8
Allie rode her bike up a hill at an average speed of 12 feet/second. She then rode back down the hill at an average speed of 60 feet/second. The entire trip took her 2 minutes. What is the total distance she traveled. [Hint: use t = time traveling down the hill]
Answer:
The total distance Allie traveled was 0.81 miles.
Step-by-step explanation:
Since Allie rode her bike up a hill at an average speed of 12 feet / second, and she then rode back down the hill at an average speed of 60 feet / second, and the entire trip took her 2 minutes, to determine what is the total distance she traveled, the following calculation must be performed:
12 + 60 = 72
72 x 60 = 4320
1000 feet = 0.189394 miles
4320 feet = 0.8181818 miles
Therefore, the total distance Allie traveled was 0.81 miles.
find the measures of m and n.
Answer:
m = 4
n = 5
Step-by-step explanation:
[tex]m + 8 = 3m\\\\m - 3m = - 8\\\\-2m = - 8\\\\m = 4[/tex]
[tex]2n - 1 = 9 \\\\2n = 9 + 1\\\\2n = 10\\\\n = 5[/tex]
Which function has least rate of change?
O y = 4x + 5
O 3x - y = 9
O x + y = 8
0 4x + 2y = 8
Answer:
O 4x+2y=8.
Hope this helps you
change the following basis to Base 10 134 in base seven
Answer:
74 base 10.
Step-by-step explanation:
134 base 7 = 7^2 + 3*7 + 4
= 49 + 21 + 4
= 74 base 10
Help please!!!!! I’m using Plato
Answer:
[tex]\frac{y^{6} }{ x^{2} }[/tex]
Step-by-step explanation:
[tex]y^{6} x^{-2}[/tex]
Answer and Step-by-step explanation:
When there is a set of values within parenthesis, and an exponents on the values and on the parenthesis, you multiply the outer exponent with the inner exponent.
When a value has a negative exponent, the value that has the negative exponent will become a fraction and go to the denominator of the fraction (or go immediately to the denominator), or if it is already a fraction, goes to the denominator. If the value that has the negative exponent is in the denominator, the value will go to the numerator. In both instances, the negative exponent will then change to positive.
First, we need to simplify the expression inside the parenthesis.
[tex]y^{\frac{3}{2} } x^{-\frac{1}{2} } --> \frac{y^{\frac{3}{2} } }{x^{\frac{1}{2}} }[/tex]
Now we multiply the 4 to the exponents.
[tex]\frac{y^{\frac{3}{2} *\frac{x4}{1} } }{x^{\frac{1}{2}}*\frac{4}{1} } = \frac{y^{\frac{12}{2}} }{x^{\frac{4}{2}}} = \frac{y^6}{x^2}[/tex]
[tex]\frac{y^6}{x^2}[/tex] is the answer.
#teamtrees #PAW (Plant And Water)
What is the expression (x+1)(x2+3x+2) as a polynomial in standard form?
Step-by-step explanation:
hope u like it.......
what is 3 squared ÷ 48 - 6
Answer:
[tex] {3}^{2} \div 48 - 6 \\ 9 \div 48 - 6 \\ = - 5.8125[/tex]
Is this a function? Yes or no?
Answer:
NO
Step-by-step explanation:
NO
What is 233,193 rounded to the nearest thousand
write an equation in slope intercept form for the line with slope 1/4 and y-intercept -6.
Answer:
y=¼x-6
Step-by-step explanation:
y=mx+c
y=¼x+-6
y=¼x-6
rotation 90° clockwise about the origin
Answer:
Take the picture you uploaded.
Click the rotate 'button' once.
Change the x to y and y to x on the graph. (axis labels)
Done
J (0, -1)
K(-4,-3)
I ( -4,-1)
Find the interquartile range of the data set represented by this box plot.
25
20
45
35
Answer:
25
Step-by-step explanation:
im pretty sure i think only ok i think no saying bad things in the comment
Solve the right triangle ABC, with C = 90.00◦ , a = 15.21 cm, b = 17.34 cm. Round to two decimal places.
Answer:
the hypotenuse side, c = 23.1 cmangle A = 41.26 ⁰angle B = 48.74 ⁰Step-by-step explanation:
Given;
first leg of the right triangle, a = 15.21 cm
second leg of the right triangle, b = 17.34 cm
Angle C = 90 ⁰
The missing parameters;
the hypotenuse side = cangle Aangle BUse Pythagoras theorem to calculate the missing side "c", which is the hypotenuse
c² = a² + b²
c² = (15.21)² + (17.34)²
c² = 532.02
c = √532.02
c = 23.1 cm
The missing angle A is calculated as;
[tex]tan(A) = \frac{a}{b} \\\\tan(A) = \frac{15.21}{17.34} \\\\tan(A) = 0.8772 \\\\A = tan^{-1} (0.8772)\\\\A = 41.26^0[/tex]
The missing angle is calculated as;
B = 90⁰ - A
B = 90⁰ - 41.26⁰
B = 48.74⁰
Write the geometric sequence in function notation.
4,2,1,1/2,1/4,...
A) AX) = (2) - (1/4)x - 1
OB) Ax) = (2) - (1/2)x - 1
C) Ax) = (4) · (/4)x - 1
D AX) = (4) · (1/2)x - 1
Answer:
D
Step-by-step explanation:
Select the correct answer.
Tom gets $12 off a box of chocolates that had an original price of $48. What percentage is the discount
Answer:
25
Step-by-step explanation:
divide 48 by 4 which is 25%
Amy types at an average speed of 38 words per rinute. She has already typed 1,450 words of her final paper, which will be more than 4,000
words. Which inequality can be used to solve for x, the number of minutes it will take Amy to finish typing her paper?
ОА.
38x-1,450 > 76
OB.
38[X+1,450) > 4,000
Ос. .
38x> 4,000
OD.
38x + 1,450 > 4,000
Reset
Next
ntum. All rights reserved.
o
74°F Mostly cloudy
I
о
m
De here to search
Answer: D. 38x + 1,450 > 4,000
Step-by-step explanation:
It has to be greater than 4,000 so A makes no sense
The parentheses are in the wrong place completely changing the meaning for B
C disregards the info we have about how she's already typed 1,450 words
The answer has to be D