The correct answer is (b). The following word equation best represents this reaction: sulfur + oxygen → sulfur dioxide.
Sulfur dioxide (SO2) is produced when sulfur is burned in oxygen. The chemical reaction that occurs is:
S(s) + O2(g) → SO2(g)
This equation represents the burning of sulfur to produce sulfur dioxide in the presence of oxygen. Sulfur, when burned in the presence of oxygen, produces sulfur dioxide. In this chemical reaction, sulfur (S) reacts with oxygen (O2) to form sulfur dioxide (SO2). The reaction is exothermic, which means that it releases heat.
Sulfur dioxide is a major air pollutant and has significant impacts on human health. However, it also has immense importance in laboratories. It is used for the manufacture of sulphuric acid and is also used as a preservative.
In summary, the correct option is B, which is sulfur + oxygen → sulfur dioxide.
To know more about sulfur dioxide, refer here:
https://brainly.com/question/9720549#
#SPJ11
The correct word equation that represents the production of sulfur dioxide from the burning of sulfur in the presence of oxygen is **option b**: sulfur + oxygen → sulfur dioxide.
When sulfur is burned in the presence of oxygen, it undergoes a chemical reaction known as combustion. During this process, sulfur reacts with oxygen to form sulfur dioxide. The equation can be balanced as follows:
[tex]Sulfur (S) + Oxygen (O2) → Sulfur Dioxide (SO2)[/tex]
In this equation, sulfur and oxygen are the reactants, while sulfur dioxide is the product. It is important to note that the coefficients (numbers in front of the chemical formulas) should be adjusted to balance the equation, ensuring that the number of atoms on both sides is equal.
Learn more about sulfur dioxide here:
https://brainly.com/question/31142164
#SPJ11
carbon dioxide gas is most soluble in water under conditions of (1) high temperature and low pressure (2) high temperature and high pressure (3) low temperature and low pressure (4) low temperature and high pressure
The condition that Carbon dioxide gas is most soluble in water is under: 4. low temperature and high pressure
When is Carbon dioxide Gas Most Soluble in Water?Carbon dioxide gas is most soluble in water under conditions of low temperature and high pressure, which causes the gas molecules to dissolve more readily into the water molecules.
This is because the solubility of a gas in water is dependent on factors such as temperature, pressure, and the nature of the gas and solvent. At higher temperatures, the kinetic energy of the gas molecules increases, causing them to move more rapidly and escape from the water more easily, while at lower temperatures, the solubility of the gas increases.
Similarly, at higher pressures, more gas molecules are forced into contact with the water, increasing the likelihood of dissolution.
Learn more about carbon dioxide gas on:
https://brainly.com/question/11867819
#SPJ1
Given the kinetics data for each enzyme in the presence and absence of its inhibitor, determine the type of inhibition. Enzyme carbonic anhydrase + inhibitor A chymotrypsin + inhibitor B penicillinase + inhibitor C lysozyme + inhibitor D carboxypeptisase A + inhibitor E KM (MM) 8,000 12,000 5,000 5,000 50 30 6 15 3 Vmax (mmol/s) 600,000 600,000 100 75 2,000 1,500 0.5 0.5 1,000 800 Competitive Noncompetitive Uncompetitive
The type of inhibition for each enzyme in the presence of its inhibitor is as follows:
carbonic anhydrase + inhibitor A: competitive inhibition chymotrypsin + inhibitor B: noncompetitive inhibition penicillinase + inhibitor C: noncompetitive inhibition lysozyme + inhibitor D: noncompetitive inhibition carboxypeptidase A + inhibitor E: noncompetitive inhibitionWhat is enzyme inhibition?
Inhibitors that do not contribute to the development of the product carry out the inhibition. The inhibitors can impact both the substrate and the enzyme. The stoppage of enzyme activity is referred to as enzyme inhibition.
To determine the type of inhibition for each enzyme in the presence of its inhibitor, we can compare the kinetics data for the enzyme alone and in the presence of the inhibitor. Specifically, we can compare the changes in KM and Vmax values.
For carbonic anhydrase + inhibitor A: In the presence of inhibitor A, KM increases and Vmax remains constant. This indicates that inhibitor A is a competitive inhibitor. For chymotrypsin + inhibitor B: In the presence of inhibitor B, both KM and Vmax decrease. This indicates that inhibitor B is a noncompetitive inhibitor. For penicillinase + inhibitor C: In the presence of inhibitor C, both KM and Vmax decrease. This indicates that inhibitor C is a noncompetitive inhibitor. For lysozyme + inhibitor D: In the presence of inhibitor D, KM decreases and Vmax remains constant. This indicates that inhibitor D is an noncompetitive inhibitor. For carboxypeptidase A + inhibitor E: In the presence of inhibitor E, KM increases and Vmax decreases. This indicates that inhibitor E is a mixed inhibitor, which can be further classified as noncompetitive since KM decreases more than Vmax decreases.Therefore, the type of inhibition for each enzyme in the presence of its inhibitor is as follows:
carbonic anhydrase + inhibitor A: competitive inhibition chymotrypsin + inhibitor B: noncompetitive inhibition penicillinase + inhibitor C: noncompetitive inhibition lysozyme + inhibitor D: uncompetitive inhibition carboxypeptidase A + inhibitor E: noncompetitive inhibitionLearn more about enzyme inhibition on:
https://brainly.com/question/14944549
#SPJ11
Why were dirigibles considered to be the wave of the future in travel?
Answer:
jkhihjijhbjbjk
why lithium chloride has a higher melting point than hydrogen chloride. refer to structure and bonding in your answers
Lithium chloride (LiCl) has a higher melting point than hydrogen chloride (HCl) because of the differences in their structures and bonding.
What is melting point?Melting point is the temperature at which a solid substance changes state from a solid to a liquid. At the melting point, the solid and liquid phases of a substance are in equilibrium, and further heating will cause the entire solid to melt into a liquid. The melting point of a substance is a physical property that is dependent on the chemical structure and bonding of the substance.
Lithium chloride is an ionic compound composed of positively charged lithium ions (Li+) and negatively charged chloride ions (Cl-). The ionic bond between these ions is very strong because of the large difference in their electronegativities. This results in a highly ordered, crystalline structure with strong electrostatic attractions between the ions, requiring a lot of energy to break apart the ionic lattice, which results in a high melting point.
In contrast, hydrogen chloride is a covalent compound composed of hydrogen and chlorine atoms that share electrons to form a bond. This type of bond is not as strong as the ionic bond found in LiCl because the electronegativities of hydrogen and chlorine are relatively close, resulting in a less polar covalent bond.
Therefore, HCl has a weaker intermolecular force, which makes it easier to break the attractive forces between molecules, requiring less energy to melt.
Learn about melting point here https://brainly.com/question/25074953
please answer that,
Each of the functions in column A will be performed by their respective hormones. Each of the hormones in the human body has a different function.
What is a hormone?A hormone is a chemical substance that is produced by a gland or a group of cells and is transported by the bloodstream to target cells or organs in the body. They are produced by endocrine glands.
To answer your question:
1. Needed by the body tor water reabsorption - Parathormone2. Needed by the body to increase blood calcium level - Calcitonin3 . Needed by the body to increase one's height - Somatotropin4. Needed by the body to combat insomnia - Endorphin5 . Needed by the body to shield the body from UV rays - Melanocyte SH6 . Needed by the body for proper metabolism - Thyroxine7 . Needed by the body to reduce physical pain or injury - Endorphin8 . Needed by the body to reduce symptoms of stress - Melatonin9 . Needed by the body to develop boy's sex characteristics - Androgen1 0 . Needed by the body to lower blood sugar level - Glucagon
To know more about hormones, visit:
https://brainly.com/question/24383458
#SPJ1
How many atoms are in 0.75mol of H2O
There are approximately 4.5 x 10^23 atoms in 0.75 mol of H2O.
Or 4,500,000,000,000,000,000,000.
How did the russian scientist first arranged the element in the periodic table?
Dmitri Mendeleev was the Russian scientist who first arranged the elements in the periodic table. He arranged elements in the periodic table by their atomic mass, and he also made sure that elements with similar properties were placed in the same group.
The periodic table is a tabular representation of the chemical elements, which are arranged by atomic number, electron configuration, and chemical properties. The rows of the periodic table are known as periods, and the columns are known as groups or families. Elements in the same group have similar chemical and physical properties.
Mendeleev's contributions to the periodic table
Mendeleev was a Russian chemist who published the first widely recognized periodic table in 1869. In the periodic table, Mendeleev arranged the elements according to their atomic mass. He also left gaps in the periodic table for unknown elements, and he predicted their properties based on the properties of the known elements.
For example, he predicted the properties of germanium, which was discovered later, and he even named it. He was also able to predict the existence and properties of some of the noble gases.
For more question on periodic table click on
https://brainly.com/question/1173237
#SPJ11
Of the 4 compounds above, v has the smallest HOMO-LUMO energy gap and therefore would absorb the wavelength of light.
It is difficult to answer this question without more information about the 4 compounds mentioned. However, based on the statement given, if a compound has a smaller HOMO-LUMO energy gap, it means that it requires less energy to excite an electron from the HOMO to the LUMO orbital.
As a result, such a compound would absorb light of a longer wavelength compared to compounds with larger HOMO-LUMO energy gaps, which require more energy to promote an electron.
Therefore, if compound "v" has the smallest HOMO-LUMO energy gap among the 4 compounds mentioned, it is likely that it would absorb light of a longer wavelength compared to the other compounds.
For more questions like wavelength visit the link below:
https://brainly.com/question/29448414
#SPJ11
describe the chemistry of biurets reagent, explaining how it works and, specifically, why you used absorbance of 550 nm to quantify protein concentration.
Biurets reagent is a solution of potassium hydroxide and copper sulfate used to measure the concentration of proteins. The reagent works by breaking down peptide bonds and creating a pink or purple solution when proteins are present. The absorbance of 550 nm is used to quantify the protein concentration because it is the wavelength that best corresponds to the color change of the solution.
Biurets reagent is a solution containing copper sulfate, sodium hydroxide, and potassium sodium tartrate. The copper ions in the biuret reagent combine with the peptide bonds present in proteins, forming a violet-colored complex. The intensity of the violet coloration is proportional to the concentration of proteins in the sample being analyzed. Absorbance at 550 nm is used to quantify protein concentration because this is the wavelength at which the violet color produced by the copper ion-peptide bond complex has maximum absorbance. By measuring the absorbance at this wavelength, the concentration of the protein in the sample can be determined through a standard curve that relates the absorbance values to known protein concentrations. The biuret test is commonly used to determine protein concentration in a variety of biological and chemical samples. The test is widely used because it is relatively simple and can be performed quickly. The biuret test is often used in combination with other analytical techniques to obtain more detailed information about protein samples.
For more information follow the link: https://brainly.com/question/4596250
#SPJ11
The pH in the intermembrane space of the mitochondria should be_____ compared to the matrix due to the
A. higher; higher concentration of protons in the intermembrane space B. higher; lower concentration of protons in the intermembrane space C. lower; higher concentration of protons in the intermembrane space
D. lower; lower concentration of protons in the intermembrane space
The pH in the intermembrane space of the mitochondria should be lower compared to the matrix due to the C. higher concentration of protons in the intermembrane space.
What is a Mitochondria?Mitochondria are organelles found in eukaryotic cells that play a vital role in producing the energy required to sustain cellular activity. Mitochondria produce energy from food and oxygen, which they use to generate ATP, the primary source of cellular energy.
The intermembrane space (IMS) is the region between the mitochondrial inner and outer membranes. The pH of the intermembrane space is significantly lower than that of the matrix due to the higher concentration of protons in the intermembrane space.
The pH gradient of the mitochondria enables the generation of ATP from ADP and Pi by ATP synthase, which pumps protons from the intermembrane space to the matrix, making the pH gradient a source of energy. The proton gradient generated by ATP synthase is used for ATP synthesis. Therefore, the pH in the intermembrane space of mitochondria should be lower compared to the matrix due to the higher concentration of protons in the intermembrane space.
To know more about mitochondria:
https://brainly.com/question/29763308
#SPJ11
What would the potential of a standard hydrogen (S.H.E.) electrode be if it was under the following conditions?
[H+] = 0.77 M
PH2 = 1.4 atm
T = 298 K
The potential of a standard hydrogen (S.H.E.) electrode under the given conditions is -0.126V.
A standard hydrogen electrode (SHE) is a reference electrode used to estimate the standard electrode potentials (E°) of half-reactions. It is made up of a platinum electrode coated in platinum black (Pt) and a hydrogen (H2) electrode dipping into an acidic solution of HCl. The pressure of H2 is measured at 1.0 atm, and the concentration of H+ is maintained at 1.0 mol/L. The potential of the SHE is set to 0.000 V at all temperatures, and other electrode potentials are compared to it to determine their standard reduction potentials.
Using the Nernst equation, we can compute the potential of the SHE : E = E° - (RT/nF)lnQ, where E is the cell potential, E° is the standard cell potential, R is the gas constant, T is the temperature, n is the number of moles of electrons transferred in the redox reaction, F is the Faraday constant, and Q is the reaction quotient.
The given conditions[H+] = 0.77 MPH2 = 1.4 atm T = 298 K
We can use the Nernst equation to calculate the potential of the SHE under these conditions as follows:
E = E° - (RT/nF)lnQ,
where E° = 0.000 VR = 8.314 J/(mol*K)n = 2 F = 96,485 J/V*KpH2 = 1.4 atm
Q = [H+]2/[H2]E = E° - (RT/nF)lnQ= 0.000 - (8.314*298/2*96,485)*ln (0.77/1.4^2)= 0.000 - 0.000688= -0.126 V
Therefore, the potential of the standard hydrogen electrode (SHE) under the given conditions would be -0.126 V.
To know more about standard hydrogen (S.H.E.) electrode please visit :
https://brainly.com/question/12588341
#SPJ11
Enter your answer in the provided box
Codeine (C18H21NO3) is a narcotic pain reliever that forms a salt with HCI What is the pH of 0.036 M codeine hydrochloride? (pKb = 5.80)
pH = ____
The pKb value of codeine (C₁₈H₂₁NO₃) is 5.80. This drug is a narcotic pain reliever that forms a salt with HCI and its pH is around 8.00.
What would be the pH of a 0.036 M codeine hydrochloride solution?The following equation is used: pKa + pKb = pKw
where, pKa is the acid dissociation constant and pKw is the self-ionization constant of water. pKa can be calculated as follows:
pKa = pKb + pKw - pH
Since the drug is a weak base, Kb (base dissociation constant) can be calculated as follows: Kb = Kw/Ka
Kb = 1.00 × 10⁻¹⁴/2.3 × 10⁻⁶
Kb = 4.35 × 10⁻⁹
The following equation can now be used to find the value of pH:
pKb + pKa = pKw
pH = pKw - pKb - pKa
pH = 14.00 - 5.36 - (-9.36)
pH = 8.00
Therefore, the pH of 0.036 M codeine hydrochloride is 8.00.
Learn more about pH here:
https://brainly.com/question/2288405
#SPJ11
which type of radioactive emission is considered the most dangerous?
Gamma radiation are the most dangerous type of radioactive emission as they are the most energetic and can penetrate the human body and damage cells. Alpha particles can cause both short-term and long-term health effects, such as cancer.
Out of alpha, beta and gamma radiation, the most dangerous type of radioactive emission is gamma radiation. This is because gamma rays are penetrating, high-energy rays that can easily penetrate the human body and cause damage to cells and DNA. Gamma radiation, unlike alpha and beta radiation, can penetrate the body's skin and tissue, exposing internal organs to radiation. When gamma rays are absorbed by living cells, they can ionize atoms and molecules, causing damage to DNA and other genetic material in the cell. High doses of gamma radiation can cause immediate symptoms such as radiation sickness and even death. Gamma radiation is frequently emitted by unstable radioactive atoms like uranium and plutonium, which are used in nuclear power plants and nuclear weapons. Workers in these industries and anyone exposed to a nuclear accident or bomb are at a higher risk of exposure to gamma radiation. Alpha radiation is a type of ionizing radiation that is emitted by certain types of unstable atoms. Alpha particles are relatively large and have a short range, so they can be stopped by a sheet of paper or the outer layer of human skin. Beta radiation is a type of ionizing radiation that is emitted by certain types of unstable atoms. Beta particles are much smaller than alpha particles, and they can travel through the human body farther than alpha particles. Gamma radiation is a type of electromagnetic radiation, similar to X-rays, but with higher energy and frequency. Gamma rays are produced by the decay of unstable atomic nuclei and are highly penetrating, meaning they can easily pass through solid objects.
For more such questions on Gamma radiation , Visit:
https://brainly.com/question/4422250
#SPJ11
write a list of rules for recognizing and naming binary molecular compounds from their chemical formulas
The following are the rules for recognizing and naming binary molecular compounds from their chemical formulas:
1. The first element in the chemical formula will be the name of the first element in the compound.
2. The second element in the chemical formula will be the name of the second element in the compound.
3. If the first element is a metal, the second element will end in “-ide”.
4. If the first element is a nonmetal, the second element will end in “-ate” or “-ite”.
5. The prefixes “mono-, di-, tri-, tetra-, penta-, and hexa-” are used to indicate the number of atoms of each element in the compound.
6. When the prefixes are not used, the number of atoms of each element is implied by the subscript.
7. If the subscript is written as a fraction, the fraction is changed to a whole number when forming the compound name.
Learn more about molecular compounds at brainly.com/question/30328923
#SPJ4
The rules for recognizing and naming binary molecular compounds are written focusing on the lower groups and the higher groups.
The rules for recognizing and naming binary molecular compounds from their chemical formulas are as follows:
1. The element with the lower group number is written first in the formula, and its full name is used.
2. The element with the higher group number is written second in the formula, and its stem name is used along with the suffix -ide.
3. The prefixes mono-, di-, tri-, tetra-, penta-, and so on are used to indicate the number of atoms present for each element in the molecule.
4. The prefix mono- is omitted for the first element in the formula.
5. The ending -a or -o in the prefix is omitted if the element name begins with a vowel, and only the vowel of the prefix is used in the compound name.
To learn more about compounds, click here:
https://brainly.com/question/26487468
#SPJ11
Which equation represents energy being absorbed as a
bond is broken?
A) H+H + H2 + energy
B) H+H+ energy H2
C) H2 + H+H+ energy
D) H2 + energy + H+H
The reaction demonstrates that energy is needed to dissociate the hydrogen atoms from one another, and as a result energy is consumed.
When a chemical bond is broken, energy is required to break the bond, and thus energy is absorbed. The equation that represents energy being absorbed as a bond is broken is option D, which is:
H2 + energy → 2H
In this equation, the energy is shown as a reactant on the left-hand side of the arrow, indicating that it is required for the reaction to proceed. The H2 molecule on the left-hand side represents a molecule with a covalent bond between two hydrogen atoms. When energy is added to the molecule, the bond between the two hydrogen atoms is broken, and the atoms become separated. This results in the formation of two hydrogen atoms on the right-hand side of the arrow, each with one unpaired electron.
Overall, the reaction shows that energy is required to break the bond between the hydrogen atoms, and thus energy is absorbed during the process.
To learn more about energy refer to:
brainly.com/question/626780
#SPJ4
In the pictured cell, the side containing zinc is the_________ and the side containing copper is the __________. The purpose of the Na2SO4 is to _________
In the pictured cell, the side containing zinc is the anode and the side containing copper is the cathode. The purpose of the Na2SO4 is to facilitate the transfer of electrons from the anode to the cathode.
A cell is a unit of life that is the smallest and most simple living organism, it can be classified as a complete organism, with all of the components that make up a living being, including DNA, membranes, and organelles. A voltaic cell is a device that converts chemical energy into electrical energy, it is also known as a galvanic cell or a Daniell cell. It is made up of two different metals that are submerged in an electrolyte solution that enables the transfer of electrons from one electrode to the other. The anode is the electrode that oxidizes and loses electrons during a redox reaction, this electrode is negatively charged, as it is the site of the oxidation reaction that releases electrons and generates an electrical current.
A cathode is an electrode that is reduced and gains electrons in a redox reaction, this electrode is positively charged and acts as a sink for electrons, absorbing them and using them to create a reduction reaction that generates an electrical current. The Na2SO4 in the pictured cell is an electrolyte solution that facilitates the transfer of electrons from the anode to the cathode. The salt dissociates into Na+ and SO42- ions, which then migrate toward the anode and cathode, respectively, where they can participate in redox reactions that generate an electrical current. This flow of ions helps to maintain a balance of charge in the cell and enables the transfer of electrons to occur more efficiently.
Learn more about anode at:
https://brainly.com/question/17109743
#SPJ11
Phosphorus pentachloride decomposes to phosphorus trichloride and chlorine gas at elevated temperatures by the following reaction:
PCl5(g) PCl3(g) + Cl2(g). If Kc = 1.8 at 250°C, what is the value of Kp at the same temperature? Can someone show me how to get the answer?
Answer choices:
8.8 x 10-2
4.2 x 10-2
77
65
Phosphorus pentachloride decomposes to phosphorus trichloride and chlorine gas at elevated temperatures by the following reaction:
PCl5(g) PCl3(g) + Cl2(g).
If Kc = 1.8 at 250°C, the value of Kp at the same temperature is given as follows. The correct option is 65. (Option D)
Kc = {PCl3 * Cl2} / {PCl5}
At equilibrium;Kp = {PCl3} * {Cl2} / {PCl5}
Since the stoichiometry of the given chemical equation is 1:1:1, Kp = Kc. Kp = 1.8 at 250°C. Therefore the answer is 65
.According to the above data, the calculation of the value of Kp at the same temperature is as follows;
Kc = {PCl3 * Cl2} / {PCl5}1.8 = {PCl3 * Cl2} / {PCl5} (At 250°C)
Kp = {PCl3} * {Cl2} / {PCl5} (At 250°C)
Kp = KcKp = 1.8
Therefore, the correct answer is option D, which is 65.
Learn more about Kp at brainly.com/question/22074421
#SPJ11
Which best completes the following analogy?
Right brain music = Left brain :
A shapes
B. speech
C colors
D. art
What is the approximate percent by mass of oxygen in SO3? 1). 2). 3). 4).
The approximate percent by mass of oxygen in SO3 is 19.98 % which is calculated by using the percent composition formula.
The sulfur trioxide is defined as the chemical compound with molecular formula or chemical formula SO3. In every sample of substance there will be the same number of sulfur atoms and oxygen atoms present in the substance.
The percent composition can be calculated by dividing the mass of the atom by the total mass of the compound or the molecular weight multiplied by 100.
It can be calculated as, C% =MA / MT×100
We know that the atomic weight of Sulphur is 32.059 g/mole and the atomic weight of oxygen is 16.0.
The total mass becomes, 32.059 + 3×16=80.059
.C% = 16.00 / 80.059 ×100
⇒C% =19.98 %
To learn more about percent composition
https://brainly.com/question/28357357
#SPJ4
The correct question is,
What is the approximate percent by mass of oxygen in SO3?
Identify the type or types of reactions the reaction between zinc and iodine is/are.a. synthesis reaction
b. acid base reaction
c. double displacement reaction
d. single replacement reaction
e. combustion reaction
f. precipitation reaction
g. halogen replacement reaction
h. redox reaction
The reaction between zinc and iodine is a single replacement or redox reaction. The Correct answer is option: d.
In this reaction, zinc (Zn) reacts with iodine (I2) to produce zinc iodide (ZnI2), and the oxidation state of zinc changes from 0 to +2, while the oxidation state of iodine changes from 0 to -1. A single replacement reaction is a type of redox reaction in which an element replaces another element in a compound. In this case, zinc replaces the iodine in the zinc iodide compound. The other reaction types listed, such as synthesis, acid-base, double displacement, combustion, precipitation, and halogen replacement reactions, do not accurately describe the reaction between zinc and iodine. Correct option is : d .
To know more about single replacement, here
brainly.com/question/392491
#SPJ4
b) which compound, a or b, was the limiting reagent in this reaction? compound b c) consider the lane that shows the reaction mixture. are the starting materials more or less polar than the reaction product? more polar
As per the information provided in the question, the compound that is the limiting reagent is "B". And the starting materials were "more polar" than the reaction product.
The limiting reagent is the one that gets consumed completely in the reaction. The other reactant is left behind in excess. The reaction's speed is determined by the amount of the limiting reagent present. In the given reaction, compound B is the limiting reagent. We can prove this by comparing the number of moles of compounds A and B. We can see that compound B has fewer moles. Therefore, it is the limiting reagent. 2 moles of compound A react with 1 mole of compound B. We have 2 moles of A and 1 mole of B in this reaction mixture. Hence, compound B is the limiting reagent. Starting materials are more polar than the reaction product. When a chemical reaction occurs, the reactants combine to form a new compound or product. The product's properties are often different from those of the starting materials. In this reaction, the starting materials are more polar than the reaction product. This can be seen by observing the reaction mixture's lane. We can see that the reaction product has moved ahead of the starting materials on the chromatogram. The starting materials are more polar than the reaction product.
For more information regarding this topic, you can click the below link
https://brainly.com/question/26905271
#SPJ11
What correlates with metallic behavior
Answer:
large atomic size and low ionization energy.
Explanation:
Metallic behavior correlates with large atomic size and low ionization energy. Thus, metallic behavior increases down a group and decreases from left to right across a period. Elements in Groups 1A(1) and 2A(2) are strong reducing agents; nonmetals in Groups 6A(16) and 7A(17) are strong oxidizing agents.
2. For each of the reactions below, write a structural reaction equation (which need not be balanced) by
drawing the structures of the reactant & product and name the product formed.
a) ethanol + K,Cr₂O, / H / reflux
b) ethanol + K₂Cr₂O, / H / distil
c) propan-1-ol + K,Cr₂O,/H. / reflux
d) propan-2-ol + K,Cr,O,/ H / reflux
e) 3-methylbutan-1-ol + K,Cr₂O, / H / reflux
f) 4-chloropentan-1-ol + K₂Cr₂O,/ H / distil
Answer:
a) Ethanol + K2Cr2O7 / H+ / Reflux → Acetaldehyde
CH3CH2OH + [O] → CH3CHO
b) Ethanol + K2Cr2O7 / H+ / Distil → Ethene
CH3CH2OH + [O] → CH2=CH2 + H2O
c) Propan-1-ol + K2Cr2O7 / H+ / Reflux → Propanal
CH3CH2CH2OH + [O] → CH3CH2CHO
d) Propan-2-ol + K2Cr2O7 / H+ / Reflux → Propanone (acetone)
(CH3)2CHOH + [O] → (CH3)2CO
e) 3-Methylbutan-1-ol + K2Cr2O7 / H+ / Reflux → 3-Methylbutanal
CH3CH(CH3)CH2CH2OH + [O] → CH3CH(CH3)CH2CHO
f) 4-Chloropentan-1-ol + K2Cr2O7 / H+ / Distil → 4-Chloropentanal
Cl(CH2)3CH2CH(OH)CH3 + [O] → Cl(CH2)3CH2CH=O + H2O
(please could you kindly mark my answer as brainliest)
How many signals would you expect in the proton-decoupled 13c-nmr spectra of the following compounds?a. 3
b. 2
c. 4
d. 1
e. 5
The correct option is 1 signal expected in the proton-decoupled 13C-NMR spectra. The correct option is D.
13C-NMR spectra: 13C-NMR spectra provide information regarding the number of carbon environments in a compound. The chemical shift ranges for carbons usually observed are between 0-220 ppm. When a compound is subjected to 13C-NMR spectroscopy, all the carbon atoms absorb radiofrequency radiation at varying frequencies, and this absorption generates signals. Therefore, every unique carbon atom absorbs radiofrequency radiation at a unique frequency, which results in the formation of a signal.The number of signals that can be observed in 13C-NMR spectra is determined by the number of carbon environments in a molecule. Carbon environments refer to distinct types of carbon atoms in a compound. A carbon environment may be determined by the types of atoms that are bonded to the carbon. If a carbon atom is bonded to three different types of atoms, it will generate three different carbon environments, which will appear as three distinct signals in the 13C-NMR spectra.Proton-decoupled 13C-NMR spectra: The most common method for acquiring 13C-NMR spectra is through proton-decoupled 13C-NMR spectra. Proton-decoupled 13C-NMR spectra differ from normal 13C-NMR spectra in that they do not show any splitting of the signals caused by the presence of protons. This is because in proton-decoupled 13C-NMR spectra, the protons are saturated by radiofrequency radiation to eliminate the coupling between the 13C and the 1H. Therefore, the number of signals observed in a proton-decoupled 13C-NMR spectrum corresponds to the number of distinct carbon environments in a molecule.How many signals are expected in the proton-decoupled 13C-NMR spectra of the following compounds? Here, we observe only one signal, implying that there is only one type of carbon atom in the molecule, and hence the answer is (d) 1 signal.Learn more about Proton decoupled 13C-NMR spectra: https://brainly.com/question/14470726
#SPJ11
Activity 2: Who's My Family? A fire has occurred in a nearby maternity clinic. The assigned nurse quickly rushed out of the place to secure the newly born babies. Unfortunately, there were some babies without their identification bracelets. Using your knowledge about codominance inheritance will help bring these babies back to their correct parents.
Codominance is a type of inheritance pattern in which both alleles of a gene are expressed equally in the phenotype of the individual. This means that if a baby inherits two different alleles for a particular trait, both will be expressed in the baby's physical appearance.
In the case of the missing identification bracelets, the nurse could use the principle of codominance to help identify the babies and return them to their correct parents. For example, if one baby has a parent with blood type A and the other has a parent with blood type B, and both babies have blood type AB due to codominance, then the nurse could match the babies with their correct parents based on their blood type.
Similarly, if there are other observable traits that exhibit codominance, such as eye color or skin tone, the nurse could use these to help identify the babies and return them to their correct parents. By understanding and applying the principles of codominance inheritance, the nurse could help ensure that each baby is reunited with their rightful family.
To learn more about inheritance refer to:
brainly.com/question/14930526
#SPJ4
What mass of hydrogen will react with 84g of N2
identify the beaker that best represents a saturated solution. assume all the solutions are at the same temperature.
The beaker that best represents a saturated solution is the one in which the solution is at its maximum level of solubility, meaning it cannot dissolve any more solute at the same temperature.
Saturated solutions are solutions in which no more solute can dissolve in the solvent at the same temperature. A solution is a homogeneous mixture composed of a solvent and a solute.
The solvent is the major component of the solution, and the solute is the minor component. The solute dissolves in the solvent to create a homogeneous solution.
A solution is said to be saturated when it has the maximum amount of solute that can dissolve in it at the same temperature. If the temperature changes, the solubility of the solute will also change, and the solution will become unsaturated or supersaturated.
Learn more about saturated https://brainly.com/question/388072
#SPJ11
Which of the following incorrectly shows the bond polarity? Show the correct bond polarity for those that are incorrect.
a. δ+H—Fδ–
b. δ+Cl—Iδ–
c. δ+Si—Sδ–
d. δ+Br—Brδ–
e. δ+O—Pδ–
The following among the given five incorrectly shows the bond polarity: δ+Br—Brδ–.
A bond's polarity is determined by the difference in electronegativity between the two atoms in the bond. The covalent bond is non-polar if the atoms are similar and have identical electronegativities. A bond is polar if the atoms have a significant difference in electronegativities. A polar bond is a bond between two atoms with different electronegativities in which the electrons in the bond are not shared equally, resulting in unequal distribution of electrical charge.
The electrons are pulled closer to the more electronegative atom in a polar covalent bond, resulting in a partial negative charge (δ-) on one end and a partial positive charge (δ+) on the other end.The polarity of bonds is represented by symbols δ+ and δ−, which represent the relative positive and negative electrical charges on the atoms, respectively.The correct bond polarity is δ+Br—Brδ–
More on bond polarity: https://brainly.com/question/10777799
#SPJ11
what are two benefits and one drawback of using models to represent scientific processes?
Two benefits of using models to represent scientific processes are that they can simplify complex systems and make predictions about how the system will behave. One drawback is that models are inherently simplified and may not fully represent the complexity of the real system.
How are models used in scientific research?
Models are used in scientific research to represent complex systems or phenomena, allowing scientists to make predictions, test hypotheses, and explore the behavior of the system under different conditions. Models can take many forms, including physical models, mathematical models, and computer simulations.
What are some examples of scientific models used in different fields of science?Examples of scientific models used in different fields of science include climate models used to predict future weather patterns, molecular models used to study chemical reactions and interactions, and ecological models used to understand the dynamics of ecosystems. Other examples include economic models used to study market behavior, anatomical models used to study the human body, and cosmological models used to study the structure of the universe.
Learn more about ecosystems here:
https://brainly.com/question/13979184
#SPJ1
100 grams of water at 95°C are saturated with potassium nitrate. If this solution is cooled to 35°C, how much of the solid will precipitate (change from the dissolved state to the solid state)?
To solve this problem, we need to use the concept of solubility and saturation. Solubility is the maximum amount of solute that can dissolve in a given amount of solvent at a specific temperature.
How much of the solid will precipitate (change from the dissolved state to the solid state)?The first step is to determine the solubility of potassium nitrate at 95°C and 35°C. According to the solubility chart, the solubility of potassium nitrate is 247 g/L at 95°C and 32 g/L at 35°C.
Next, we need to calculate how much potassium nitrate is dissolved in the 100 grams of water at 95°C. The solubility of potassium nitrate at 95°C is 247 g/L, so in 100 grams of water, we can dissolve:
(247 g/L) x (100 g / 1000 mL) = 24.7 g of potassium nitrate
Therefore, we have a saturated solution of potassium nitrate with 24.7 grams of potassium nitrate dissolved in 100 grams of water.
When the solution is cooled to 35°C, the solubility of potassium nitrate decreases to 32 g/L. Since we have more than 32 grams of potassium nitrate dissolved in the solution, the excess will precipitate out of the solution. The amount of potassium nitrate that will precipitate can be calculated by subtracting the solubility at 35°C from the initial concentration:
24.7 g - (32 g/L) x (100 g / 1000 mL) = 18.3 g
Therefore, 18.3 grams of potassium nitrate will precipitate out of the solution when it is cooled from 95°C to 35°C.
Learn more about solubility from
https://brainly.com/question/23946616
#SPJ1