Answer:
[tex]-32^\frac{3}{5} = -8[/tex]
Step-by-step explanation:
Given
[tex]-32^\frac{3}{5}[/tex]
Required
The equivalent expression
We have:
[tex]-32^\frac{3}{5}[/tex]
Rewrite as:
[tex]-32^\frac{3}{5} = (-32)^\frac{3}{5}[/tex]
Expand
[tex]-32^\frac{3}{5} = (-2^5)^\frac{3}{5}[/tex]
Remove bracket
[tex]-32^\frac{3}{5} = -2^\frac{5*3}{5}[/tex]
[tex]-32^\frac{3}{5} = -2^3[/tex]
[tex]-32^\frac{3}{5} = -8[/tex]
Oak street and elm street run parallel to each other. When main street intersects them, it forms exterior 8, measuring 60. What is the measure of 1?
Answer:
0 is the answer measure 1
Solve for x: 10/3 = x/(−5/2)
9514 1404 393
Answer:
x = -25/3
Step-by-step explanation:
Multiply by the inverse of the coefficient of x. Reduce the fraction.
(-5/2)(10/3) = (-5/2)(x/(-5/2))
-50/6 = x = -25/3
Answer:
-25/3
Step-by-step explanation:
the other person is also correct. khan said so
Identify the transformed function that represents f(x) = ln x stretched vertically by a factor of 17, reflected across the x-axis, and shifted by 19 units left.
A. g(x) = −17ln (x + 19)
B. g(x) = 17ln (x − 19)
C. g(x) = 17ln (x + 19)
D. g(x) = −17ln (x − 19)
Answer:
b
Step-by-step explanation:
ANSWER. EXPLANATION. The given logarithmic function is. The transformation,. stretches the graph of y=f(x) vertically by a factor of c units ...
4 votes
ANSWER[tex]y = - 3 ln(x - 7) [/tex]EXPLANATIONThe given logarithmic function is [tex]f(x) = ln(x) [/tex]The transformation, [tex]y = - cf(x - k)[/tex]stretches
Explain how the given graph is deceptive.
Complete the statements based on the bar graph.
By not starting the horizontal axis at 0, the
bar appears to be about one-fourth the height of the Pecan bar. The
bar appears to be about one-half the height of the Pecan bar. The
bar appears to be less than one-half the height of the Pecan bar. This misleads the viewer to
the number of each type of nut used
Ans:
Pine Nut
Walnut
Almond
Understimate
Answer:
In the picture below.
Step-by-step explanation:
From the commenter and answer above, confirmed on edge 2022.
The blueprints of a house have a scale factor of 30. If one side of the house measures 4 inches on the blueprint, how long is the actual side length (in feet)?
A. 7.5 feet
B.10 feet
C. 90 feet
D. 120 feet
If the scale factor is 30, then all you have to do is multiply each measurement by the scale factor. In this case, 4 · 30 = 120.
An article is marked to sell at a gain of 10%. If it be sold for Rs. 7.50 less there would be loss of 5%, find the cost price.
Answer:
750,. is answer
I hope it helps
A bookkeeper needs to post the cost of the desk and the chair into his records. The cost of the desk is fives times the cost if the chair. The total cost of the desk and the chair is $720, what is the cost of the chair?
Answer:
120
Step-by-step explanation:
720÷6
why?
becoz 6= 1+5
1 is the cosy of the chair
5 is the cost of the desk
Graph y=|x|+5, how does it compare to parent graph y=|x|
9514 1404 393
Answer:
it is shifted 5 units upward
Step-by-step explanation:
The y-coordinate is a measure of the distance above the x-axis. When 5 is added to a y-coordinate, the point is shifted 5 units upward.
The function y = |x| +5 adds 5 units to the y-value of every point of the graph of y = |x|. The graph of y=|x|+5 is shifted 5 units upward from the parent graph.
You are dealt one card from a 52-card deck. Find the probability that you are not dealt a heart.
The probability is ___.
(Type an integer or a fraction. Simplify your answer.)
Answer:
3/4
Step-by-step explanation:
There are 13 hearts in a 52 deck.
52-13=39
39/52=3/4
The probability that you are not dealt a heart from the deck of cards is 3/4.
What is the probability that you are not dealth with a heart?Probability determines the chances that an event would occur. The probability the event occurs is 1 and the probability that the event does not occur is 0.
The probability that you are not dealth with a heart = 1 - (number of hearts / total number of cards)
1 - 13/52 = 39/52 = 3/4
To learn more about probability, please check: https://brainly.com/question/13234031
A publisher reports that 54% of their readers own a personal computer. A marketing executive wants to test the claim that the percentage is actually different from the reported percentage. A random sample of 200 found that 44% of the readers owned a personal computer. Is there sufficient evidence at the 0.10 level to support the executive's claim
The null and alternate hypotheses are
H0 : u = 0.44 vs Ha: u > 0.44
Null hypothesis: 44% of readers own a personal computer.
Alternate Hypothesis : greater than 44% of readers own a personal computer.
This is one tailed test and the critical region for this one tailed test for the significance level 0.1 is Z > ±1.28
The given values are
p1= 0.54 , p2= 0.44 ; q2= 1-p2= 0.56
Using z test
Z = p1-p2/√p2(1-p2)/n
Z= 0.54-0.44/ √0.44*0.56/200
z= =0.1/ 0.03509
z= 2.849
Since the calculated value of Z= 2.849 is greater than Z= 1.28 reject the null hypothesis therefore there is sufficient evidence to support the executive's claim.
Null hypothesis is rejected
There is sufficient evidence to support the executive's claim at 0.10 significance level.
https://brainly.com/question/2642983
If 15% of the customer's total is $22.05, then the customer's total is
Answer:
$147
Step-by-step explanation:
0.15x = $22.05
Divide both sides by 15
22.05/0.15 = $147
What information is NOT necessary to find the area of a circle?
a.
pi
c.
diameter
b.
radius
d.
height
Answer:
D. Height
General Formulas and Concepts:
Geometry
Area of a Circle: A = πr²
r is radiusStep-by-step explanation:
In order to find the area of a circle, we must follow the formula. Out of all the options given, height is not incorporated into the formula.
It wouldn't make sense to use height anyways since it would be 3-dimenional and we're talking 2-dimensional.
∴ our answer is D.
"What mathematical ideas are you curious to know more about as a result of takingthis class? Give one example of a question about the material that you'd like to explorefurther, and describe why this is an interesting question to you."
One mathematical idea I've always been curious about is "integration and derivation".
Integration is about assimilating different variables. Derivation is a mathematical process whereby a result is gotten from some initial assumptions.
Integration is used everyday in different aspects of our lives. For example, if a person is travelling from let's say point A to point B, the speed used by the person might vary but through integration, one can easily get the accurate speed.
Through the division of equations into smaller bits, once can use integration to get the answer that one seeks. Architect can use integration in building the right structures at the exact places where the structures fits.
Likewise derivatives can be used by businesses in assessing whether a profit or loss will be made for a particular transaction or sale of product.
You can read more on:
https://brainly.com/question/14295614
what is factorization of the trinomial below? -x2+2x+48
Answer:
-(x+6) (x-8)
Step-by-step explanation:
-(x^2-2x-48)
two values the multiply to get 48 and the difference of those two numbers gives you -2.
6,-8
6 x -8 =-48
6-8=-2
In this case we factored out the negative so leave it outside
-(x+6) (x-8)
Answer:
-1(x-8)(x+6) is the answer just took the test
Step-by-step explanation:
Last year at a certain high school, there were 56 boys on the honor roll and 150 girls on the honor roll. This year, the number of boys on the honor roll decreased by 25% and the number of girls on the honor roll decreased by 12%. By what percentage did the total number of students on the honor roll decrease?
Answer:
15.534% decrease
Step-by-step explanation:
Find the new number of boys and girls on the honor roll:
56(0.75) = 42 boys
150(0.88) = 132 girls
Find the new total number of students on the honor roll:
42 + 132 = 174
Find the percent decrease by dividing the difference in the number of students by the original number.
There were originally 206 total students on the honor roll. Find the difference:
206 - 174 = 32
Divide this by the original amount:
32/206
= 0.15534
So, the number of students on the honor roll decreased by approximately 15.534%
Farah is x years old. Ibtisam is 3 years younger than Farah. Muna is twice as old as Ibtisam. Write and expression in terms of x, for
(a) Ibtisam's age,
(b) The sum of their three ages, giving your answer in its simplest form.
Answer:
Farah: x
Ibtisam: x-3
Muna: 2(x-3) or 2x-6
Sum of all their ages: 4x-6
Step-by-step explanation:
Farah is x, so we don't need an expression for that.
Ibtisam is 3 years younger than Farah, which means that we need to subtract 3 from Farah, and that would be Ibtisam's age. x-3.
Muna is 2 TIMES Ibtisam's age, so we need to multiply whatever expression taht was used for Ibtisam by 2. Put brackets around the equation with 2 outside: 2(x-3). Solve and you get 4x-6
Now, you have all their ages in expression form, now you need to simplify by adding:
x+x+2x-6
We cannot simplify -6, so we put that aside. Add all the x's and you get 4x, insert the minus 6 at the end:
4x-6
Hope this helps!
--Applepi101
Answer:
a) X -3
b) 4x - 9
Step-by-step explanation:
a) Farah's age is X so Ibtisam will be X - 3 old since he is 3years younger than Farah
b) Farah is X years old
Ibtisam is X - 3 years old
Muna is 2(X -3) since she is 2 times older than Ibtisam.
the sum of Thier ages will be
X + X -3 + 2(x-3)
= 2x - 3 + 2x - 6
= 4x - 9
jane drove 50 miles more then her husband jim. the total distance traveled was 230 miles. find the number of miles that each of them traveled. (let jim be x and jane be x+50)
Answer:
115
Step-by-step explanation:
You divide 230 by 2 cause there are two peoples. I hope that helps :)
For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding. A random sample of 5240 permanent dwellings on an entire reservation showed that 1613 were traditional hogans.
(a) Let p be the proportion of all permanent dwellings on the entire reservation that are traditional hogans. Find a point estimate for p. (Round your answer to four decimal places.)
(b) Find a 99% confidence interval for p. (Round your answer to three decimal places.) What is the lower limit? What is the upper limit?
Answer:
Step-by-step explanation:
point est. 0.307824427
99% 2.58
Confidence Interval - "P" values
(0.2914 , 0.3243 )
AM and CM
BM and BM
AB and CB
These are variables on your graph
Which equation describes this graph?
Step-by-step explanation:
The graph clearly has a positive slope. So Answer D couldn't be correct. Next: the y-intercept of this line is (0, -2), so b in the formula y = mx÷ b must be -2.
Therefore the correct equation of this line is
y = x - 2 (choice a)
Select the statement that best justifies the conclusion based on the given information.
a. Definition of bisector.
b. Definition of midpoint.
c. If two lines intersect, then their intersection is exactly one point.
d. Through any two different points, exactly one line exists.
9514 1404 393
Answer:
a. Definition of bisector.
Step-by-step explanation:
Line l is a line through the midpoint M. We can conclude it is a bisector, because, by definition, a bisector is a line through the midpoint.
The conclusion is justified by the definition of a bisector.
Find the length represented by x for each pair of similar triangles.
18cm, 9cm, and x
30cm, 15cm, and 25cm
Answer:
15 cm
Step-by-step explanation:
Since the traingles are similar, we can find the ratio between the side lengths, and it will be the same for each side.
We can use the side length 9 and 15 to find this ratio. 15/9=5/3. So, the ratio of a side length of the larger triangle to the smaller one is 5/3, so our equation becomes 5/3 = 25/x. Use any method you like to find that x=15.
Hope this helped,
~cloud
The length of a rectangle is twice its width. If the area of the rectangle is 72in², find its perimeter
Let breadth be x
Length=2x[tex]\\ \sf\longmapsto Area=Length\times Breadth[/tex]
[tex]\\ \sf\longmapsto 72=2x(x)[/tex]
[tex]\\ \sf\longmapsto 2x^2=72[/tex]
[tex]\\ \sf\longmapsto x^2=\dfrac{72}{2}[/tex]
[tex]\\ \sf\longmapsto x^2=36[/tex]
[tex]\\ \sf\longmapsto x=\sqrt{36}[/tex]
[tex]\\ \sf\longmapsto x=6[/tex]
Length=6×2=12inBreadth=6in[tex]\\ \sf\longmapsto Perimeter=2(L+B)[/tex]
[tex]\\ \sf\longmapsto Perimeter=2(12+6)[/tex]
[tex]\\ \sf\longmapsto Perimeter=2(18)[/tex]
[tex]\\ \sf\longmapsto Perimeter=36in[/tex]
Let two events A and B be independent. Knowing P(A)=0.8 and P(A+B)=0.93. Calculate the probability P(B).
Answer:
Hello,
P(B)=0.65
Step-by-step explanation:
If P(A+B) means P(A∪B)=0.93 then you may read below.
Let's say x=P(B)
A and B being independent, P(A∩B)=P(A)*P(B)=0.8*x
Since P(A∪B)=P(A)+P(x)-P(A∩B) ,
0.93=0.8+x-0.8*x
0.2*x=0.13
x=0.65
In a class of 70 pupils, 36 like tasty time , 34 like ice-
cream, 6 like both tasty time }
draw a Venn diagram to show the data.
find how
many
like neither tasty time nor ice-cream
Step-by-step explanation:
I think this might be the correct answer
The number of pupils that like neither tasty-time nor ice cream is 6 if in a class of 70 pupils, 36 like tasty time, 34 like ice cream, 6 like both tasty times.
What is the Venn diagram?It is defined as the diagram that shows a logical relation between sets.
The Venn diagram consists of circles to show the logical relation.
We have:
In a class of 70 pupils, 36 like tasty time, 34 like ice cream, 6 like both tasty time.
Total = 70 pupils
Number of like tasty time = 36
Number of like ice cream = 34
Number of like both = 6
Let x be the total number of pupils that like neither tasty-time nor ice cream
The number of pupils that like ice cream only = 34 - 6 = 28
The number of pupils that like tasty-time only = 36 - 6 = 30
From the Venn diagram:
28 + 30 + 6 + x = 70
x = 70 - 64
x = 6
Thus, the number of pupils that like neither tasty-time nor ice cream is 6 if in a class of 70 pupils, 36 like tasty time, 34 like ice cream, 6 like both tasty times.
Learn more about the Venn diagram here:
brainly.com/question/1024798
#SPJ2
Which ratio is equal to 27 : 81?
Answer:
1:3
Step-by-step explanation:
27 : 81
Divide each side by 27
27/27 : 81/27
1:3
The point A(−8,−4) is reflected over the origin and its image is point B. What are the coordinates of point b?
9514 1404 393
Answer:
B(8, 4)
Step-by-step explanation:
Reflection across the origin negates both coordinate values.
(x, y) ⇒ (-x, -y) . . . . . reflection across the origin
A(-8, -4) ⇒ B(8, 4)
Write an equation and solve it to answer each question. A pile of 55 coins consisting of nickels and dimes is worth $3.90. Find the number of each. I only need the equation plz. WILL MARK BRAINLIEST.
Answer:
0.05x + 0.1(55 - x) = 3.9
Step-by-step explanation:
There are 55 coins.
Let x = number of nickels.
The number of dimes is 55 - x.
The value of a nickel is $0.05, and the value of a dime is $0.10.
The value of x nickels is 0.05x
The value of 55 - x dimes is 0.1(55 - x)
The total value of the coins is 0.05x + 0.1(55 - x)
The total value of the coins is $3.90
0.05x + 0.1(55 - x) = 3.9
An insurance company offers its policyholders a number of different premium payment options. For a randomly selected policyholder, let X 5 the number of months between successive payments. The cdf of X is as follows:
0 x<1
0.30 1< x <3
F(x)= 0.40 3< x <4
0.45 4< x <6
0.60 6< x <12
1 12< x
Required:
a. What is the pmf of x?
b. Using just the cdf, compute P(3< x <6)and P(4< x)
Answer:
(a)
[tex]\begin{array}{cccccc}x & {1} & {3} & {4} & {6} & {12} \ \\ P(x) & {0.30} & {0.10} & {0.05} & {0.15} & {0.40} \ \end{array}[/tex]
(b)
[tex]P(3 \le x \le 6) = 0.30[/tex]
[tex]P(4 \le x)=0.60[/tex]
Step-by-step explanation:
Given
[tex]F(x) = \left[\begin{array}{ccc}0& x<1 &\\0.30&1 \le x<3 &\\0.40&3 \le x < 4& &0.45 &4 \le x<6 &\\0.60 & 6 \le x < 12 & & 1 & 12 \le x\end{array}\right[/tex]
Solving (a): The pmf
This means that we list out the probability of each value of x.
To do this, we simply subtract the current probability value from the next.
So, we have:
[tex]\begin{array}{cccccc}x & {1} & {3} & {4} & {6} & {12} \ \\ P(x) & {0.30} & {0.10} & {0.05} & {0.15} & {0.40} \ \end{array}[/tex]
The calculation is as follows:
[tex]0.30 - 0 = 0.30[/tex]
[tex]0.40 - 0.30 = 0.10[/tex]
[tex]0.45 - 0.40 = 0.05[/tex]
[tex]0.60 - 0.45 = 0.15[/tex]
[tex]1 - 0.60 = 0.40[/tex]
The x values are gotten by considering where the equality sign is in each range.
[tex]1 \le x < 3[/tex] means [tex]x = 1[/tex]
[tex]3 \le x < 4[/tex] means [tex]x = 3[/tex]
[tex]4 \le x < 6[/tex] means [tex]x=4[/tex]
[tex]6 \le x < 12[/tex] means [tex]x = 6[/tex]
[tex]12 \le x[/tex] means [tex]x = 12[/tex]
Solving (b):
[tex](i)\ P(3 \le x \le 6)[/tex]
This is calculated as:
[tex]P(3 \le x \le 6) = F(6) - F(3-)[/tex]
From the given function
[tex]F(6)= 0.60[/tex]
[tex]F(3-) = F(1) = 0.30[/tex]
So:
[tex]P(3 \le x \le 6) = 0.60 - 0.30[/tex]
[tex]P(3 \le x \le 6) = 0.30[/tex]
[tex](ii)\ P(4 \le x)[/tex]
This is calculated as:
[tex]P(4 \le x)=1 - F(4-)[/tex]
[tex]P(4 \le x)=1 - F(3)[/tex]
[tex]P(4 \le x)=1 - 0.40[/tex]
[tex]P(4 \le x)=0.60[/tex]
The curve y=2x^3+ax^2+bx-30 has a stationary point when x=3. The curve passes through the point (4,2).
(A) Find the value of a and the value of b.
#secondderivative #stationarypoints
A stationary point at x = 3 means the derivative dy/dx = 0 at that point. Differentiating, we have
dy/dx = 6x ² + 2ax + b
and so when x = 3,
0 = 54 + 6a + b
or
6a + b = -54 … … … [eq1]
The curve passes through the point (4, 2), which is to say y = 2 when x = 4. So we also have
2 = 128 + 16a + 4b - 30
or
16a + 4b = -96
4a + b = -24 … … … [eq2]
Eliminate b by subtracting [eq2] from [eq1] and solve for a, then for b :
(6a + b) - (4a + b) = -54 - (-24)
2a = -30
a = -15 ===> b = 96