Answer:
Step-by-step explanation:
Please answer & number. Thank you! <33
Answer:
2)=2
4)=3
5)=5
8)=-1
Step-by-step explanation:
just divide the number by the number with variable
How many cubes with side lengths of 1/2 cm does it take to fill the prism?
Answer:
24
Step-by-step explanation:
You first find out how many cubes can fit into each measurement, then multiply them. (2*4*3=24)
Answer:
It will take 24 cubes to fill the rectangular prism.
Step-by-step explanation:
Find the volume of a cube with side lengths of 1/2 cm:
1/2^3 = 1/8
1/8 cm^3
Find the volume of the whole rectangular prism (lwh):
1 x 3/2 x 2
= 3/2 x 2
= 3
3 cm^3
Divide the volume of the prism by the bolume of one cube:
3 ÷ 1/8 = 24
Therefore it will take 24 cubes to fill the prism. Hope this helps!
The amount of snowfall falling in a certain mountain range is normally distributed with a average of 170 inches, and a standard deviation of 20 inches. What is the probability a randomly selected year will have an average snofall above 200 inches
Answer:
0.0668 = 6.68% probability a randomly selected year will have an average snowfall above 200 inches.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a average of 170 inches, and a standard deviation of 20 inches.
This means that [tex]\mu = 170, \sigma = 20[/tex]
What is the probability a randomly selected year will have an average snowfall above 200 inches?
This is 1 subtracted by the p-value of Z when X = 200. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{200 - 170}{20}[/tex]
[tex]Z = 1.5[/tex]
[tex]Z = 1.5[/tex] has a p-value of 0.9332.
1 - 0.9332 = 0.0668
0.0668 = 6.68% probability a randomly selected year will have an average snowfall above 200 inches.
Please I need help!!!!!!!!
Answer:
10 is the correct answer
Answer:
Go with the third option 10!
i hope this helped!
How do you complete the other two?
I know how to complete the first one but 3D Pythag confuses me so much
For now, I'll focus on the figure in the bottom left.
Mark the point E at the base of the dashed line. So point E is on segment AB.
If you apply the pythagorean theorem for triangle ABC, you'll find that the hypotenuse is
a^2+b^2 = c^2
c = sqrt(a^2+b^2)
c = sqrt((8.4)^2+(8.4)^2)
c = 11.879393923934
which is approximate. Squaring both sides gets us to
c^2 = 141.12
So we know that AB = 11.879393923934 approximately which leads to (AB)^2 = 141.12
------------------------------------
Now focus on triangle CEB. This is a right triangle with legs CE and EB, and hypotenuse CB.
EB is half that of AB, so EB is roughly AB/2 = (11.879393923934)/2 = 5.939696961967 units long. This squares to 35.28
In short, (EB)^2 = 35.28 exactly. Also, (CB)^2 = (8.4)^2 = 70.56
Applying another round of pythagorean theorem gets us
a^2+b^2 = c^2
b = sqrt(c^2 - a^2)
CE = sqrt( (CB)^2 - (EB)^2 )
CE = sqrt( 70.56 - 35.28 )
CE = 5.939696961967
It turns out that CE and EB are the same length, ie triangle CEB is isosceles. This is because triangle ABC isosceles as well.
Notice how CB = CE*sqrt(2) and how CB = EB*sqrt(2)
------------------------------------
Now let's focus on triangle CED
We just found that CE = 5.939696961967 is one of the legs. We know that CD = 8.4 based on what the diagram says.
We'll use the pythagorean theorem once more
c = sqrt(a^2 + b^2)
ED = sqrt( (CE)^2 + (CD)^2 )
ED = sqrt( 35.28 + 70.56 )
ED = 10.2878569196893
This rounds to 10.3 when rounding to one decimal place (aka nearest tenth).
Answer: 10.3==============================================================
Now I'm moving onto the figure in the bottom right corner.
Draw a segment connecting B to D. Focus on triangle BCD.
We have the two legs BC = 3.7 and CD = 3.7, and we need to find the length of the hypotenuse BD.
Like before, we'll turn to the pythagorean theorem.
a^2 + b^2 = c^2
c = sqrt( a^2 + b^2 )
BD = sqrt( (BC)^2 + (CD)^2 )
BD = sqrt( (3.7)^2 + (3.7)^2 )
BD = 5.23259018078046
Which is approximate. If we squared both sides, then we would get (BD)^2 = 27.38 which will be useful in the next round of pythagorean theorem as discussed below. This time however, we'll focus on triangle BDE
a^2 + b^2 = c^2
b = sqrt( c^2 - a^2 )
ED = sqrt( (EB)^2 - (BD)^2 )
x = sqrt( (5.9)^2 - (5.23259018078046)^2 )
x = sqrt( 34.81 - 27.38 )
x = sqrt( 7.43 )
x = 2.7258026340878
x = 2.7
--------------------------
As an alternative, we could use the 3D version of the pythagorean theorem (similar to what you did in the first problem in the upper left corner)
The 3D version of the pythagorean theorem is
a^2 + b^2 + c^2 = d^2
where a,b,c are the sides of the 3D block and d is the length of the diagonal. In this case, a = 3.7, b = 3.7, c = x, d = 5.9
So we get the following
a^2 + b^2 + c^2 = d^2
c = sqrt( d^2 - a^2 - b^2 )
x = sqrt( (5.9)^2 - (3.7)^2 - (3.7)^2 )
x = 2.7258026340878
x = 2.7
Either way, we get the same result as before. While this method is shorter, I think it's not as convincing to see why it works compared to breaking it down as done in the previous section.
Answer: 2.7Answer:
Qu 2 = 10.3 cm
Qu 3. = 2.7cm
Step-by-step explanation:
Qu 2. Shape corner of a cube
We naturally look at sides for slant, but with corner f cubes we also need the base of x and same answer is found as it is the same multiple of 8.4^2+8/4^2 for hypotenuse.
8.4 ^2 + 8.4^2 = sq rt 141.42 = 11.8920141 = 11.9cm
BD = AB = 11.9 cm Base of cube.
To find height x we split into right angles
formula slant (base/2 )^2 x slope^2 = 11.8920141^2 - 5.94600705^2 = sq rt 106.065
= 10.2987863
height therefore is x = 10.3 cm
EB = 5.9cm
BC = 3.7cm
CE^2 = 5.9^2 - 3.7^2 = sqrt 21.12 = 4.59565012 = 4.6cm
2nd triangle ED = EC- CD
= 4.59565012^2- 3.7^2 = sq rt 7.43000003 =2.72580264
ED = 2.7cm
x = 2.7cm
X^2-y^2=k need the answer
Answer:
Let's solve for k.
x2−y2=k
Step 1: Flip the equation.
k=x2−y2
Answer:
k=x2−y2
Step-by-step explanation:
I didn't understand this to be honest I thought I had to find what jm and lm were together and then subtract from the whole total...but ended up being wrong. whats the correct answer?
Answer:
The correct answer is 3x-2
Step-by-step explanation:
It gives you the expression for JM and LM, and it asks for JL. Therefore, if you take away LM from JM, you are left with JL. You must subtract 2x-6 from 5x-8.
∴5x-8-(2x-6)
Do not forget to distribute the negative since you are subtracting, so instead of subtracting 6 from 8, you will be adding 6 to 8 because two negatives make a positive.
Create a circle such that its center is point A and B is a point on the circle.
Answer:
The center of a circle is the point in the circle which is equidistant to all the edges of thr circle. The point a is the center, while point b is an arbitrary point in the circle. Find attachment for the diagram.
The square root of the variance is called the: standard deviation beta covariance coefficient of variation
Answer:
standard deviation
Step-by-step explanation:
is y=3x^2-x-1 a function
Answer: Yes it is a function.
This is because any x input leads to exactly one y output.
The graph passes the vertical line test. It is impossible to draw a single vertical line through more than one point on the parabolic curve.
2. What facts are needed to solve the problem?
Answer:
firstly we have to identify the problems, understand carefully and chose the best way to solve problems.
Evaluate 12 sin 85° correct to two decimal places.
Answer:
12 x sin(85)
12x 0.99619
155.40
Solution:
12 x sin (85) = 11.95 (Since sin85 is 0.996194)
So, the answer is 11.95.
If the relationship is proportional, what is the missing value from the table
x
-12
-1
?
-10
-30
O-8
-6
-5
04
Given:
Consider the below figure attached with this question.
The table represents a proportional relationship.
To find:
The missing value from the table.
Solution:
If y is proportional to x, then
[tex]y\propto x[/tex]
[tex]y=kx[/tex] ...(i)
Where, k is a constant of proportionality.
The relationship passes through the point (-3,-1). Substituting [tex]x=-3,y=-1[/tex] in (i), we get
[tex]-1=k(-3)[/tex]
[tex]\dfrac{-1}{-3}=k[/tex]
[tex]\dfrac{1}{3}=k[/tex]
Putting [tex]k=\dfrac{1}{3}[/tex] in (i), we get
[tex]y=\dfrac{1}{3}x[/tex] ...(ii)
We need to find the y-value for [tex]x=-12[/tex].
Substituting [tex]x=-12[/tex] in (ii), we get
[tex]y=\dfrac{1}{3}(-12)[/tex]
[tex]y=-4[/tex]
Therefore, the missing value in the table is -4. Hence, option D is correct.
People think that that babies are equally likely to be either boys or girls. Actually, about 51.3% of all babies are boys. If a family has two children (not twins), what is the chance both children are boys
Answer:
26.32%
Step-by-step explanation:
The probability that both children are boys would be a sequence of events. Therefore, in order to calculate this we need to multiply the probability of the first baby being a boy with the probability of the second baby being a boy. Since the probability of any baby being a boy is 51.3%, we simply multiply this value in decimal form by itself.
51.3 / 100 = 0.513
0.513 * 0.513 = 0.263169 or 26.32%
Help please. Need to get this right to get 100%
Answer:
Step-by-step explanation:
[tex]f(x) = \frac{4}{x}\\\\f(a) = \frac{4}{a}\\\\f(a+h) = \frac{4}{a+h}\\\\\frac{f(a+h) - f(a)}{h} = \frac{\frac{4}{a+h} - \frac{4}{a}}{h}[/tex]
[tex]=\frac{\frac{4(a)}{(a+h)a} - \frac{4(a+h)}{a(a+h)}}{h}\\\\=\frac{\frac{4a - 4a - 4h}{a(a+h)}}{h}\\\\=\frac{\frac{ - 4h}{a(a+h)}}{h}\\\\= \frac{-4h}{a(a+h) \times h}\\\\= -\frac{4}{a(a+h)}\\\\[/tex]
Write an equation that represents the line.
Use exact numbers
a/b=2/5 and b/c=3/8 find a/c
Answer:
[tex]\frac{a}{c}[/tex] = [tex]\frac{3}{20}[/tex]
Step-by-step explanation:
[tex]\frac{a}{c}[/tex] = [tex]\frac{a}{b}[/tex] × [tex]\frac{b}{c}[/tex] = [tex]\frac{2}{5}[/tex] × [tex]\frac{3}{8}[/tex] = [tex]\frac{6}{40}[/tex] = [tex]\frac{3}{20}[/tex]
Convert 0.53 hectograms to centigrams.
53 centigrams
0.000053 centigrams
530 centigrams
5,3000 centigrams
Answer:
As for metric prefixes, "hecto" means hundred and "centi" means hundredth.
So, converting .53 hectograms to centigrams requires multiplying it by 10,000.
So, .53 hectograms * 10,000 equals 5,300 centigrams.
Source http://www.1728.org/convprfx.htm
Step-by-step explanation:
The club will use the majority criterion method to determine the final winner. However, while finalizing the votes, a member of the club discovers that Mason did not meet the original criteria to be considered for the vacation package, because he is a county deputy, not a city police person, so Mason is eliminated from the votes. Who actually will win the tickets? Is the irrelevant alternative criterion supported in this case?
Answer and Explanation:
The irrelevant alternative criterion states that if two candidates A and B contest for an election and candidate B is preferred to candidate A then any other candidate X should not cause candidate A to win the election.
In this case if Mason was candidate A, then candidate B should still win by the majority criterion method and the irrelevant alternative criterion would still be supported. However if he is candidate B then the irrelevant alternative criterion is not supported.
In a family of 3 children, what is the probability that there will be exactly 2 boys assuming that the sexes are equally likely to occur in each birth
Answer:
There is a 60.00 percent probability of a particular outcome and 40.00 percent probability of another outcome.
if cosA=3√2/5,then show that cos2A=11/25
Answer:
Step-by-step explanation:
Cos 2A = 2Cos² A - 1
[tex]= 2*(\frac{3\sqrt{2}}{5})^{2}-1\\\\=2*(\frac{3^{2}*(\sqrt{2})^{2}}{5^{2}})-1\\\\=2*\frac{9*2}{25} - 1\\\\=\frac{36}{25}-1\\\\=\frac{36}{25}-\frac{25}{25}\\\\=\frac{11}{25}[/tex]
if log 2=x express 12.5 in terms of x
Answer:
b
Step-by-step explanation:
thbte
The owner of a busy coffee shop wanted to see if it was worth keeping tea on the menu. She logged the number of cups of tea she sold each day for seven days.
6 12 5 7 7 3 9
Calculate the mean, median, range, and midrange of the number of cups of tea sold for the week.
Answer:
mean = 7
median = 7
range = 9
mid range = 7.5
Step-by-step explanation:
3, 5, 6, 7, 7, 9, 12
Range is the difference between the highest and lowest values of a set of observations
Range = highest value - lowest value
12 - 3 = 9
Median can be described as the number that occurs in the middle of a set of numbers that are arranged either in ascending or descending order
3, 5, 6, 7, 7, 9, 12
median = 7
Mean is the average of a set of numbers. It is determined by adding the numbers together and dividing it by the total number
Mean = sum of the numbers / total number
(6 + 12 + 5 + 7+ 7 + 3 + 9) / 7 = 7
Mid range = (highest value + lowest value) / 2
(12 + 3) / 2 = 7.5
A merchant keeps marble in a cylindrical plastic container that has a diameter of 28cm and height of 35cm. A marble has a diameter of 25mm. Determine the number of marbles that can be stored in such a container if air space accounts for 20% between marbles.
Answer:
2107 marbles can be stored in the container.
Step-by-step explanation:
Since a merchant keeps marble in a cylindrical plastic container that has a diameter of 28cm and height of 35cm, and a marble has a diameter of 25mm, to determine the number of marbles that can be stored in such a container if air space accounts for 20 % between marbles, the following calculation must be performed, knowing that the volume of a cylinder is equal to height x π x radius²:
35 x 3.14 x (28/2) ² = X
109.9 x (14 x 14) = X
109.9 x 196 = X
21,540.4 = X
In turn, the volume of each 25mm diameter marble is equal to:
25mm = 2.5cm
4/3 x 3.14 x 1.25³ = X
4.18666 x 1.953125 = X
8.1770 = X
21,540.4 x 0.8 = 17,232.32
17,232.32 / 8,177 = 2,107.41
Therefore, 2107 marbles can be stored in the container.
URGENT HELP
Find the points of intersection of the graphs involving the following pair of functions.
f(x)=2x^2 + 3x - 3 and g(x) = -x^2
Answer:
[tex]{ \tt{f(x) = 2 {x}^{2} + 3x - 3 }} \\ { \tt{g(x) = - {x}^{2} }} \\ f(x) + 2 \times g(x) : \\ 0 {x}^{2} + 3x - 3 = 0 \\ x = 1 [/tex]
point's (1, 0)
Categorize the following logical fallacy.
John Bardeen's work at the Advanced Institute for Physics has progressed so slowly that even his colleagues call him a plodder. Hence, it is prudent at present not to take seriously his current theory relating how strings constitute the smallest of subatomic particles.
a. Circular reasoning
b. False dilemma
c. Appeal to consequence
d. Ad hominem
e. Correlation implies causation
Answer:
d. Ad hominem
Step-by-step explanation:
A fallacy can be defined as a mistaken or false belief that are based on illogical arguments or reasoning.
However, a lot of people might actually think it to be true but it isn't. There are various types of fallacy, these include;
I. Black or white.
II. Non sequitur.
III. Appeal to moderation.
IV. Bandwagon.
V. Appeal to authority.
VI. Straw man.
VII. Oversimplification or hasty generalization.
VIII. Appeal to ignorance.
IX. Appeal to pity.
X. Ad hominem.
Ad hominem can be defined as a type of fallacy in which the motive, character, or some other aspect of a person is attacked rather than his or her position.
This ultimately implies that, Ad hominem is typically based on prejudices, emotions, or feelings rather than appealing to reason, intellect or substance.
In this scenario, John Bardeen's research work at the Advanced Institute for Physics has progressed so slowly that even his colleagues call him a plodder. As a result, the speaker concluded that it's prudent at present not to take seriously his current theory on how strings constitute the smallest of subatomic particles. Thus, the logical fallacy described above is an ad hominem because John's slowness in his research work is bone of contention for the speaker rather than analyzing and concentrating on his theory about strings.
TIME REMAINING
49:02
What is the value of h?
The graph shows that f(x) = 3* is translated horizontally
and vertically to create the function g(x) = 3*- h + k.
81%
O-2
O-1
O 1
O 2
f(x)
001)
What is the answer to this photo
Answer:
h=2
Step-by-step explanation:
f is translated right 2 units (so h=2) and up 2 units (so k=2)
The value of h is 2.
What is Translation of Functions?Translation of functions is defined as the when each point in the original graph is moved by a fixed units in the same direction.
There are horizontal translation and vertical translation of functions.
A function f(x) when translated horizontally leads to the function g(x) which is equal to g(x) = f(x ± k) where k is the units to which the function is translated.
And the vertical translation leads to the function g(x) = f(x) ± k, where k is the units to which the function is translated.
Here the original function is, f(x) = 3ˣ.
The point corresponding to x = 0 in f(x) is x = 2 in g(x).
That is (0, 1) is translated to (2, 3).
f(x) is horizontally translated to the right.
3ˣ translates to 3ˣ⁻².
Hence the value of h is 2.
Learn more about Translations here :
https://brainly.com/question/29198392
#SPJ7
PLEASE BE RIGHT AND SOLVE
Answer:
Option B: Rotation
Step-by-step explanation:
The shape appears to have the same size, but it has been moved in a way that is not reflection. Through the process of elimination, the answer is rotation.
SCALCET8 3.9.017.MI. Two cars start moving from the same point. One travels south at 48 mi/h and the other travels west at 20 mi/h. At what rate is the distance between the cars increasing two hours later
Answer:
The rate at which the distance between the cars increasing two hours later=52mi/h
Step-by-step explanation:
Let
Speed of one car, x'=48 mi/h
Speed of other car, y'=20 mi/h
We have to find the rate at which the distance between the cars increasing two hours later.
After 2 hours,
Distance traveled by one car
[tex]x=48\times 2=96 mi[/tex]
Using the formula
[tex]Distance=Time\times speed[/tex]
Distance traveled by other car
[tex]y=20\times 2=40 mi[/tex]
Let z be the distance between two cars after 2 hours later
[tex]z=\sqrt{x^2+y^2}[/tex]
Substitute the values
[tex]z=\sqrt{(96)^2+(40)^2}[/tex]
z=104 mi
Now,
[tex]z^2=x^2+y^2[/tex]
Differentiate w.r.t t
[tex]2z\frac{dz}{dt}=2x\frac{dx}{dt}+2y\frac{dy}{dt}[/tex]
[tex]z\frac{dz}{dt}=x\frac{dx}{dt}+y\frac{dy}{dt}[/tex]
Substitute the values
[tex]104\frac{dz}{dt}=96\times 48+40\times 20[/tex]
[tex]\frac{dz}{dt}=\frac{96\times 48+40\times 20}{104}[/tex]
[tex]\frac{dz}{dt}=52mi/h[/tex]
Hence, the rate at which the distance between the cars increasing two hours later=52mi/h
Jamie left home on a bike traveling at 24 mph. Five hours later her brother realized Jamie had forgotten her wallet and decided to take it to her. He took his car and traveled at 64 mph. How many hours must the brother drive to catch Jamie?
Answer:
3 hrs
Step-by-step explanation:
5 * 24 = 120 miles
64x = 120 + 24x
40x = 120
x = 3 hrs