Answer:
Step-by-step explanation:
i think if its -10 degrees i think the fahrenheit would be 50 degrees
Simplify this math problem show Your work
9514 1404 393
Answer:
(p -9q)/(4p² +12pq)
Step-by-step explanation:
The least common denominator will be the product of the denominators.
[tex]\dfrac{-3}{4p}+\dfrac{1}{p+3q}=\dfrac{-3(p+3q)+1(4p)}{(4p)(p+3q)}=\boxed{\dfrac{p-9q}{4p^2+12pq}}[/tex]
What is the value of y in the solution to the system of equations?
1 2 3x + 2 y = 1
2x – 3y=-30
Answer:
y=1
Step-by-step explanation:
Answer:
SEESH thanks for the points
Step-by-step explanation:
An expression to convert 50 miles per hour to miles per minute is shown.
What value can be entered in the box to correctly make this conversion?
Answer:
[tex]{ \tt{ = \frac{50}{1 \times 60} }}[/tex]
Step-by-step explanation:
50 miles=50 miles
1 hour=60 minutes
50÷60
0.8333333333333333mile per minute
~1.0 mile per minute
5.A shipment of 200microwavescontains twentydefective units. In how many ways can a vending company buy fifteenof thesemicrovavesand receivea.No defective units(2pts)b.Exactly two defective units.(2pts)c.At least one defective unit.(2pts)
Answer:
Step-by-step explanation:
Total no. of goods, n = 200
no. of defective units in the goods, d = 20
hence the no. of proper units,
g = n-d
g = = 200-20
g = 180
a)
ways in which a vending company buys fifteen of these microwaves and receive no defective units be:
[tex]^{180}C_{15}=\frac{180!}{15!\times (180-15)!}[/tex]
[tex]\approx 2.83\times 10^{21}[/tex]
b)
ways in which a vending company buys fifteen of these microwaves and receive exactly two defective units be:
[tex]^{20}C_2\times ^{180}C_{13}=\frac{20!}{2!\times (20-2)!} \times \frac{180!}{13!\times (180-13)!}[/tex]
[tex]\approx 190\times (2.146\times 10^{19})[/tex]
[tex]\approx 4.076\times 10^{21}[/tex]
c)
ways in which a vending company buys fifteen of these microwaves and receive at least one defective units be:
[tex]^{20}C_{1}\times ^{199}C_{14}=\frac{20!}{1!\times (20-1)!} \times \frac{199!}{13!\times (199-13)!}[/tex]
[tex]\approx 20\times (8.258\times 10^{19})[/tex]
[tex]\approx 1.652\times 10^{21}[/tex]
Not sure about the answers I gave
Need help with the others
Answer:
Ask me
Step-by-step explanation:
Tell me dear ask..
The graphs below have the same shape the equation of the bluegrass is f(x)=x^3 what is the equation of the red graph
Answer:
g(x) = x^3 - 2
Step-by-step explanation:
As you can see on the graph, the line has been translated down 2 units.
If the graph of f has the same shape as the graph of g, then the slope remains the same. The y intercept (k) changes by -2 units, so the k value is -2
g(x) = x^3 - 2
Hope this helps!!
7. What is given in the problem?
A. Radius of 80m C. Radius of 80 ft.
B. Diameter of 40 ft. D. Diameter of 40 m paki sagot
Answer:
radius of 80cm is the answer
In 1980, the average cost of a pack of cigarettes was $0.88. In 2000, the average cost was $5.31 per pack.
What is the average rate of change of the cost of a pack of cigarettes? What is another name for the average rate of change?
Round your answer to the nearest cent.
Answer:
The average rate of change of the cost of a pack is 22 cents per year.
Another name for the average rate of change is slope.
Step-by-step explanation:
The average rate of change of the cost of a pack ([tex]r[/tex]), in monetary units per year, is equal to the change in the average cost of a pack ([tex]\Delta c[/tex]), in monetary units, divided by the change in time ([tex]\Delta t[/tex]), in years. Then, the average rate of change is:
[tex]r = \frac{\$\,5.31-\$\,0.88}{2000-1980}[/tex]
[tex]r = \$\,0.22\,\frac{1}{yr}[/tex]
The average rate of change of the cost of a pack is 22 cents per year.
Another name for the average rate of change is slope.
Suppose that E and F are points on the number line. If EF=20 and E lies at 4, where could F be located?
Answer:
F lies at 24Step-by-step explanation:
Since EF = 20 and E is at 4
F is at:
4 + 20 = 24data in the bar graph to solve the following problems. Choose the letter of the correl answer.
Distance from Churh (meters)
250
210
190
200
175
150
150
100
50
C. 25m
1. How much farther does Paolo walk thạnIgpher? Joshua
Topher
A. 20m
B. 15 m
C. 10m
D. 5m
2. How much farther does Joshua walk than Lucas?
A. 15m
B. 20m
D. 30m
3. How much farther does Topher than Lucas?
A. 50m
B. 40m
C. 30m
D. 20m
4. If you combine Paolo's and Lucas' distance from the church and compare it against the combined
distance walked by Joshua and Topher, which combined distance is farther
from the church?
A. Joshua and Topher
C. Joshua and Paolo
B. Paolo and Lucas
D. Topher and Lucas
5. Find the average distance of the houses of the 4 friends from the church?
A. 181
B. 191
C. 180
Answer:
The answer is below
Step-by-step explanation:
The bar chart to the question is attached below.
The distance traveled by Paolo = 210 m, The distance traveled by Lucas = 150 m, The distance traveled by Jashua = 175 m, The distance traveled by Topher = 190 m
1) The farther distance walk by Paolo = The distance traveled by Paolo - The distance traveled by Topher = 210 m - 190 m = 20 m
2) The farther distance walk by Jasha = The distance traveled by Jashua - The distance traveled by Lucas = 175 m - 150 m = 25 m
3) The farther distance walk by Topher = The distance traveled by Topher - The distance traveled by Lucas = 190 m - 150 m = 40 m
4) Combined distance of Paolo's and Lucas = 210 m + 150 m = 360 m
Combined distance of Jashua and Topher = 175 m + 190 m = 365 m
Therefore the Combined distance of Jashua and Topher is more
5) Average distance = (210 + 150 + 175 + 190)/4 = 181.25 m
Plz tell this AWANSERS STEP BY STEP
Step-by-step explanation:
solved in the diagram above
I hope it helps you
Helpi
Identify the domain of the function shown in the graph.
Answer:
D = all reals (or -7 to 7)
Step-by-step explanation:
If the line continues on for infinity, then the domain is all reals, or negative infinity to positive infinity. If the line ends on the graph that we can see, though, the domain would be [-7 , 7]
The manager of a donut store believes that 35% of the customers are first-time customers. A random sample of 150 customers will be used to estimate the proportion of first-time customers. Assuming this belief is correct, what is the probability that the sample proportion will be between 0.2 and 0.4
Answer:
0.8996 = 89.96% probability that the sample proportion will be between 0.2 and 0.4
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
The manager of a donut store believes that 35% of the customers are first-time customers.
This means that [tex]p = 0.35[/tex]
Sample of 150 customers
This means that [tex]n = 150[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.35[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.35*0.65}{150}} = 0.0389[/tex]
What is the probability that the sample proportion will be between 0.2 and 0.4?
p-value of Z when X = 0.4 subtracted by the p-value of Z when X = 0.2.
X = 0.4
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.4 - 0.35}{0.0389}[/tex]
[tex]Z = 1.28[/tex]
[tex]Z = 1.28[/tex] has a p-value of 0.8997
X = 0.2
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.2 - 0.35}{0.0389}[/tex]
[tex]Z = -3.85[/tex]
[tex]Z = -3.85[/tex] has a p-value of 0.0001
0.8997 - 0.0001 = 0.8996
0.8996 = 89.96% probability that the sample proportion will be between 0.2 and 0.4
For the diagram below, which equation is the correct use of the distance
formula?
9514 1404 393
Answer:
D
Step-by-step explanation:
Any equation that does not have y2 as the first term in the second set of parentheses will be incorrect.
The correct usage is shown in equation D.
please help will mark brainly. *personal finance*
Answer:
{B} travelling costs paid in connection with a temporary work assignment
what is 4/7 raised to the power of negative 1 as a rational number
Answer:
7/4
Step-by-step explanation:
(4/7)^-1
We know a^-b = 1/a^b
1/ (4/7)^1
7/4
Answer:
(4/7)^-1
=1/(4/7)^1
=1÷4/7
=1×7/4
=7/4
Therefore 7/4 is equal to 1.75 as a rational number
What is the m GE bisects Find m
Answer:
DGF = 106
Step-by-step explanation:
Bisects means to divide in half, with two equal parts
DGF = DGE + EGF
DGE = EGF
DGF = DGE + DGE
DGF = 53+53
DGF = 106
GE bisects ∠DGF, so it divides ∠DGF into 2 equal parts.
So, m∠EGF = m∠DGE
=> m∠EGF = 53°
m∠DGF = m∠EGF + m∠DGE
=> m∠DGF = 53° + 53°
=> m∠DGF = 106°
Which histogram represents the following data set?
31, 67, 8, 37, 12, 87, 14, 34, 105, 57, 42, 8, 16, 54, 17, 20, 72, 23,
27, 63, 24, 52, 14, 44, 27, 5, 28, 22, 33, 15, 6, 36, 41, 21, 46
Answer:
Option A
Step-by-step explanation:
Histogram shows the range of data on the x-axis while the frequency of occurrence is on the y-axis.
We have the following ranges from the Histogram ;
0 to 11
11 to 22
22 to 33
33 to 44
44 to 55
55 to 66
66 to 77
77 to 88
88 to 99
99 to 110
From the given set of data, the frequency according to the range is as follows;
0 to 11; 4
11 to 22; 8
22 to 33; 7
33 to 44; 6
44 to 55; 4
55 to 66; 2
66 to 77; 2
77 to 88; 1
88 to 99; 0
99 to 110; 1
The only Histogram that corresponds to these frequency is option A
Question 5
Points 1
duction
st
Which of the following is a polynomial of degree 5?
est
7x+ 5x2-3
0 2x7-5
O x1/7 + 1
0 12x4 - 5x3 + 6x - 4
Answer:
You can go ahead with this!
Step-by-step explanation:
Option A
Is the write answer
Pls could someone help me with this
Answer:
- Bar Gaps should be the same
Y-axis up in units of 5 would help out
Step-by-step explanation:
Write a polynomial f(x) that satisfies the given conditions. Polynomial of lowest degree with zeros of -2 (multiplicity 3), 3 (multiplicity 1), and with f(0) = 120.
Answer:
Step-by-step explanation:
Polynomial f(x) has the following conditions: zeros of -2 (multiplicity 3), 3 (multiplicity 1), and with f(0) = 120.
The first part zeros of -2 means (x+2) and multiplicity 3 means (x+2)^3.
The second part zeros of 3 means (x-3) and multiplicity 1 means (x-3).
The third part f(0) = 120 means substituting x=0 into (x+2)^3*(x-3)*k =120
(0+2)^3*(0-3)*k = 120
-24k = 120
k = -5
Combining all three conditions, f(x)
= -5(x+2)^3*(x-3)
= -5(x^3 + 3*2*x^2 + 3*2*2*x + 2^3)(x-3)
= -5(x^4 + 6x^3 + 12x^2 + 8x - 3x^3 - 18x^2 - 36x - 24)
= -5(x^4 + 3x^3 - 6x^2 - 28x -24)
= -5x^4 - 15x^3 + 30x^2 + 140x + 120
Verify the sine law by taking particular triangle in four quadrant.
Answer:
answer is in the picture above
Notación científica de 0,567
Answer:
0,00567×10¹
Step-by-step explanation:
Para convertir a notación decimal:
0.00567×10¹
answer???????? with explanations, para lam ko di mga hula
Answer:
144
Step-by-step explanation:
To Find :-
Least Common denominator .Solution :-
We have ,
> 1/8 , 2/9 , 3/12 .
The denominator of the fractions are ,
> 8 , 9 , 12
The LCM of 8,9,12 will be ,
2 | 8 , 9 , 12
2 | 4 , 9 , 6
2 | 2 , 9 , 3
3 | 2 , 3 , 1
Therefore , LCM will be ,
> 2⁴ × 3² = 16 × 9 = 144
Write an expression for the sequence of operations described below.
double t, subtract v from the result, then subtract u from what you have
Do not simplify any part of the expression.
Step-by-step explanation:
Double t
t+t=2t
Subtract v
2t-v
Subtract u
2t-v-u
Study the table representing the price of different amounts of apples, in pounds, and then complete the sentences. The constant difference in the y-values is . The linear function is .
Answer: the first part is 1.25. The second part is y=1.25x
Step-by-step explanation: edge 2021
Follow the process of completing the square
to solve 2x2 + 8x - 12 = 0.
After adding B2 to both sides of the equation in step 4, what is the constant on the right side of the equation?
2x^2 + 8x - 12 = 0..divide by 2
x^2 + 4x - 6 = 0
x^2 + 4x = 6...add 4 to both sides of the equation
x^2 + 4x + 4 = 6 + 4
(x + 2)^2 = 10....<== ur constant is 10
x + 2 = (+-)sqrt 10
x = -2 (+ - ) sqrt 10
x = -2 + sqrt 10
x = -2 - sqrt 10
Yess again pls help!
Tyyy
Joe bought 200 masks and each mask costs Rs.5. How much did he pay altogether?
pls write the steps how to do if you I will give 5 star
Given:
total number of masks= 200cost of 1 mask= Rs. 5so, total cost fir 200 masks=
200×5
= 1000
therefore, Joe paid Rs. 1000 altogether.
(3b-4)(b+2) in standard form
Answer:
3b^2 + 2b -8
Step-by-step explanation:
* means multiply
^ means exponent
3b * b = 3b^2
3b * 2 = 6b
-4 * b = -4b
-4 * 2 = -8
3b^2 + 6b -4b -8
3b^2 + 2b -8