Answer:
Step-by-step explanation:
4986 ounces/m³
Step-by-step explanation:
1 kilogram = 35.274 ounces
1 cubic foot = 0.0283 cubic metre
We are converting kg/ft³ to ounces/m³
Hence:
4kg/ft³ × 35.274 ounces/ 1 kg × 1 ft³/0.0283m³
= 4985.7243816 ounces/m³
Approximately to the nearest whole number = 4986 ounces/m³
brainly adefunkeadewole
The density of the material is approximately 123 ounces per cubic meter.
Density [tex](\(D\))[/tex] is defined as mass [tex](\(m\))[/tex] per unit volume [tex](\(V\))[/tex], and it is calculated using the formula:
[tex]\[ D = \frac{m}{V} \][/tex]
In this case, the density is given in kilograms per cubic foot. To convert this to ounces per cubic meter, we need to perform the following steps:
Step 1: Convert kilograms to ounces:
1 kilogram = 35.27396 ounces
Step 2: Convert cubic feet to cubic meters:
1 cubic foot = 0.0283168 cubic meters
Now, let's substitute the given values and perform the conversion:[tex]\[ \text{Density in ounces per cubic meter} = \frac{4 \, \text{kg} \times 35.27396 \, \text{ounces/kg}}{1 \, \text{cubic foot} \times 0.0283168 \, \text{cubic meters/cubic foot}} \][/tex]
Solving this equation gives us the density in ounces per cubic meter:
[tex]\[ \text{Density} \approx 123 \, \text{ounces/m}^3 \][/tex]
Rounded to the nearest whole number, the density of the material is approximately 123 ounces per cubic meter.
In summary, we converted the given density from kilograms per cubic foot to ounces per cubic meter using unit conversions.
This involved converting the mass units and volume units before performing the calculation to obtain the final density value in the desired units.
To know more about Density here
https://brainly.com/question/17276634
#SPJ3
Suppose the hypotenuse of a right triangle is 13 cm and one of the legs is 10 cm. Use the Pythagorean Theorem to find the measure of the triangle’s other leg.
Answer:
3
Step-by-step explanation:
Pythagorean rule
[tex]hyp = opp + adj \\ therefore. \\ opp = hyp - adj \\ and \\ adj = hyp - opp[/tex]
opp=13-10
opp=3
If (a,3) is the point lying on the graph of the equation 5x + 2y = -4, Then find a.
Answer:
I've attached the Answer
Answer:
a = - 2
Step-by-step explanation:
Given x = a, y = 3 lies on the equation. That is the values satisfies the equation when substituted.
Find a :
Equation : 5x + 2y = - 4
5 ( a ) + 2 ( 3) = - 4
5a + 6 = - 4
5a + 6 - 6 = - 4 - 6 [ subtracting both sides by 6 ]
5a + 0 = - 10
5a = - 10
a = - 2 [ dividing both sides by 5]
[ fact check : If (-2 , 3 ) lies on the equation : 5x + 2y = - 4
5(-2) + 2( 3 ) = - 4
- 10 + 6 = - 4
- 4 = - 4 ]
The ages of five children in a family are 6, 1, 3, 10, and 17. Which statement is true for this group of data?
mode>mean
median>mean
median=mode
mean>median
Answer:D - mean>median
Step-by-step explanation:
There are no repeating variables to have a mode so median and mean are the only options. The mean of this data set is 7.4 and the median is 6. Therefore mean greater than median
Solve for b in the literal equation y = 12x + 12b.
b=
Answer:
[tex]b = \frac{y-12x}{12}[/tex]
Step-by-step explanation:
subtract 12x from both sides, then divide by twelve.
Jodi has two bank accounts. Her parents started Account A for her. It currently has $100 in it, and Jodi deposits $20 into it each month. Jodi's grandparents started Account B for her. It currently has $300 in it, and her grandparents deposit $40 into it each month.
Answer:
(f+g)(x) = 60x + 400
Step-by-step explanation:
Given :
Amount in account A:
f(x) = 20x + 100
Amount in account B :
g(x) = 40x + 300
Total amount in Account A and B:
f(x) + g(x) = (20x + 100) + (40x + 300)
(f+g)(x) = (20x + 40x) + (100 + 300)
(f+g)(x) = 60x + 400
if a triangle has one angle that measure 81 degrees and another that measures 47 degrees, what is the measure of the third angle?
Answer: 52
Step-by-step explanation:
81 + 47 is 128.
180 - 128 =52 degrees.
:)
In Which Quadrant is this true
Given:
[tex]\sin \theta <0[/tex]
[tex]\tan \theta <0[/tex]
To find:
The quadrant in which [tex]\theta[/tex] lie.
Solution:
Quadrant concept:
In Quadrant I, all trigonometric ratios are positive.
In Quadrant II, only [tex]\sin\theta[/tex] and [tex]\csc\theta[/tex] are positive.
In Quadrant III, only [tex]\tan\theta[/tex] and [tex]\cot\theta[/tex] are positive.
In Quadrant IV, only [tex]\cos\theta[/tex] and [tex]\sec\theta[/tex] are positive.
We have,
[tex]\sin \theta <0[/tex]
[tex]\tan \theta <0[/tex]
Here, [tex]\sin\theta[/tex] is negative and [tex]\tan\theta[/tex] is also negative. It is possible, if [tex]\theta [/tex] lies in the Quadrant IV.
Therefore, the correct option is D.
The two triangles are similar. What is the value of x? Enter your answer in the box. x = Two right triangles, one smaller than the other, back to back, so that their right angles form a straight angle. The two acute angles along the straight angle are congruent to each other. The overlapping part of the legs is labeled 12. The part of the overlapping side that extends above the smaller triangle is labeled 3. The leg of the smaller triangle that is a ray of the straight angle is labeled 3 x plus 1. The leg of the larger angle that is a ray of the straight angle is labeled 4 x.
Answer:
The two triangles are similar.
What is the value of x?
Enter your answer in the box.
x=
The value of x is 7 units.
What is Similarity of Triangles?Two triangles are said to be comparable if their two sides are in the same ratio as the two sides of another triangle and their two sides' angles inscribed in both triangles are equal.
Given :
AD = 6 units , BD = 8 units, m∠ABC = m∠DBE = 90° and
∠DEB ≅ ∠ACB
Now, AB = AD + BD
= 8 + 6 = 14 units
Now, In ΔABC and ΔDBE,
∠DBE = ∠ABC ( Each of 90° )
∠DEB = ∠ACB ( given )
So, By using AA postulate of similarity of triangles , ΔABC ~ ΔDBE
Now, proportion of the corresponding sides will be equal.
AD/ DB= BC/ BE
14/8 = 3x/ 2x-2
4x= 28
x= 7
Hence, the value of x is 7 units.
Learn more about similarity of Triangle here:
https://brainly.com/question/11923416
#SPJ6
Find the value of x in the isosceles triangle shown below.
Quadrilateral GHIJ is similar to quadrilateral KLMN. Find the measure of
side LM. Round your answer to the nearest tenth if necessary.
Answer:
LM = 24.3
Step-by-step explanation:
In terms of similar shapes, we know that the ratio of the value of one side to its corresponding side value is equal to another. In other words, we know that LK and HG are corresponding sides by looking at the quadrilaterals. The ratio of LK to HG is equal to the ratio of another pair of corresponding sides, such as LM and IH.
Therefore, the ratio of LK and HG (LK/HG) is equal to the ratio of LM and IH (LM/IH) . Make sure to keep the same quadrilateral's sides on top/bottom. In this example, LM and LK are on the same quadrilateral, and are therefore both on top. Similarly, IH and HG are of the same quadrilateral and are both on bottom. We can write this as
LK / HG = LM / IH
34/7 = LM / 5
Multiply both sides by 5
34*5/7 = LM
LM ≈ 24.2857
Rounding to the nearest tenth, LM = 24.3
Answer:
24.3
Step-by-step explanation:
Joseph and Mark have $230. Joseph and Kevin have $130. Mark had 3 times as much money as Kelvin. How much money does Kelvin have?
Answer:
Step-by-step explanation:
Let's call Joseph "J", Mark "M", and Kevin "K" for ease. We need a system of equations to solve this, 3 equations for 3 unknowns. The first equation is
J + M = 230. The second equation is
J + K = 130. The third equation is
M = 3K. Sub that 3K into the first equation and get
J + 3K = 230. Now take th second equation and solve it for J:
J = 130 - K. Now sub 130 - K into the re-written first equation to get a whole new equation in terms of K only:
130 - K + 3K = 230 and
2K = 100 so
K = 50
Kevin has $50
NEED HELLPPPPP !!!!
Answer:
x = 14
Step-by-step explanation:
Triagle GIA and Triangle GNT are congruent.
Ryder used front end estimation to estimate the product of -24.98 - 1.29 what is the zestimate
Answer:
20
Step-by-step explanation:
The numbers whose product are to be obtained :
(–24.98)(–1.29)
To use front end approximation, numbers are rounded to the greatest place value :
For :
(-24.98) is rounded to - 20 (4 is rounded here to 0)
(-1.29) is rounder to - 1 (2 is rounded to 0)
Then, the product of the two numbers will be :
-20 * - 1 = 20
Which of these is the lowest unit price for apples? $8.00 per 10-pound bag $21.40 per 3-pound bag $4.10 per 5-pound bag $.79 per pound Click on the correct answer.
Answer:
.79 cents a pound is the lowest unit price for apples
Step-by-step explanation:
A car covered 450km in 5 hours. find the speed in meters per second
Step-by-step explanation:
Hey there!
Given;
Distance (d) = 450 km = 450*1000 = 450000 m
Time(t) = 5 hours = 5*60*60 = 18000s
Now;
Speed (s) = Distance (d) /Time(t)
Or, s = 450000/18000
Or, s = 25m/s.
Therefore, the speed is 25m/s.
Hope it helps!
Answer:
The car has a velocity of 25 m/s.
Step-by-step explanation:
There are two ways to solve this problem.
First way :
450km = 450.000m
5h = 5x 3.600s =18.000s
v = s/t = 450.000 / 18.000 = 25m/s
Second way :
Velocity = speed/time = 450 / 5 = 90 km/h
90/3.6 = 25 m/s
Either way, the car has a velocity of 25 m/s.
Find the values of a and b that make the second expression equivalent to the first expression. Assume that x > 0 and y ≥ 0.
Answer:
a= 16
b= 2
Step-by-step explanation:
edge 2021
Answer:
a=16 and b=2
Step-by-step explanation:
next one is B.
)) A farmer placed an order for 16 2/3 tons of fertilizer. He calculates that the corn fields
will require 8 5/6 tons of it. How much fertilizer will the farmer have left for his other crops?
Answer:
7 5/6
Step-by-step explanation:
16 2/3 - 8 5/6
16 4/6- 8 5/6
7 5/6
Let $z$ and $w$ be complex numbers satisfying $|z| = 5, |w| = 2,$ and $z\overline{w} = 6+8i.$ Then enter in the numbers \[|z+w|^2, |zw|^2, |z-w|^2, \left| \dfrac{z}{w} \right|^2 \]below, in the order listed above. If any of these cannot be uniquely determined from the information given, enter in a question mark. Don't even know where to start.
I got 49 for the first one, 100 for the second one, 9 for the 3rd one, and 6.25 for the 4th one. But it was wrong, so I don't know how to do this question.
Answer:
1st entry: 41
3rd entry: 17
Step-by-step explanation:
The 1st and 3rd entry are incorrect.
We will use the following for the 1st and 3rd:
[tex]|z+w|=|z|^2+|w|^2+2R(z\overline{w})[/tex]
[tex]|z-w|=|z|^2+|w|^2-2R(z\overline{w})[/tex]
where [tex]R(z\overline{w})[/tex] means 'real part of [tex]z\overline{w}[/tex]'.
Let's do part 1 now)
25+4+2(6)
29+12
41
Let's do part 3 now)
25+4-2(6)
29-12
17
10 points!!!!! Do 14 and 15 only hurry please.
Answer:
8. x = 16
9. x = 10
14.
m ∠RSU = 130°
m ∠UST = 50°
15.
m ∠RSU = 124°
m ∠UST = 56°
Step-by-step explanation:
8.
Given ∠DEF is bisected by EG. That is , ∠DEG = ∠GEF
That is , (x + 15)° = 31°
x = 31 - 15 = 16
9.
Given ∠DEF is bisected by EG. That is , ∠DEG = ∠GEF
That is ,
(6x - 4)° = 56°
6x = 56 + 4
6x = 60
x = 10
14.
13x + 5x = 180° [straight line angles ]
18x = 180
x = 10
m ∠RSU = 130°
m ∠UST = 50°
15.
4x + 12 + 2x = 180° [ straight line angles]
6x = 180 - 12
6x = 168
x = 28
m ∠RSU = 4(28) + 12 = 112 + 12 = 124°
m ∠UST = 2(28) = 56°
Answer:
14. 13x+5x
=18x
180(angles on a st. line)= 18x
180/18
=10
RSU=13*10=130
UST=5*10=50
x
+
5
y
=
20
x
+
3
y
=
14
Answer:
A) x + 5y = 20
B) x + 3y = 14
Multiplying A) by -1
A) -x -5y = -20 then adding B)
B) x + 3y = 14
-2y = -6
y = 3
x = 5
Step-by-step explanation:
Solve the following quadratic equation. *
x^2+12x-45=0
Answer:
9 over 5
Step-by-step explanation:
Answer:
Step-by-step explanation:
x^2 + 12 - 45 = 0
solving by middle term break method
x^2 + (15 - 3) - 45 = 0
x^2 + 15x - 3x - 45 = 0
x(x + 15) - 3(x + 15) = 0
(x + 15)(x - 3) = 0
either x + 15 = 0 OR, x - 3 = 0
x + 15 = 0
x = 0 -15
x = -12
x - 3 = 0
x = 0 + 3
x = 3
therefore x = -12,3
i have done solution for the given question in two different methods.
the solution done in note copy is by using quadratic formula.
What’s the equation of the blue line?
Answer:
Step-by-step explanation:
The equation of blue line A is x = 1.
That of blue line B is y = 4.
Jamal puts $100 in an account that does not earn any interest. Every month after that, he deposits the same amount of money. This sequence represents his account balance for the first few months. $100, $125, $150, What is the explicit formula in function form for the amount of money in his account at the beginning of month n?
Answer:
Tn = 75+25n
Step-by-step explanation:
The balance are in arithmetic progression
$100, $125, $150...
The formula for calculating the nth term of the sequence is expressed as;
Tn = a+(n-1)d
a =100
d = 125 - 100 = 150 - 125
d = 25
n is the number of terms
Substitute
Tn = 100+(n-1)*25
Tn = 100 + 25n-25
Tn = 75+25n
Hence the nth term of the sequence is Tn = 75+25n
Find angle C!!!!! See the image below! I need this answer fast
Answer:
55
Angle C is a inscribed angle of the of Arc Ba.
CA is the diameter so that means Arc BA equal 110 becuase
110+70=180.
Angle C is half of Arc BA so Angle C is
[tex]55[/tex]
In the given figure alongside,prove that
Triangle ABC is simalar to Triangle SRT
Find the length of AC
Answer:
let's use Pythagoras theorem,
h²=b²+l²
so,
ad²=ac²+dc²
6²=ac²+3²
36-9=ac²=27
√27 can be written as 3√3,
hence ac= 3√3
Put these numbers in order from least to greatest.
1/8,1/2,0.13, and 7/8
Answer: 1/8, 0.13, 1/2, 7/8
Step-by-step explanation: Mental Math
Step-by-step explanation:
0.13,1/2,1/8,and 7/8
hope it is helpful to you
Given that X = - 2 and y = 4 , Evaluate the expression. 5y – 4x
Answer: 28
Step-by-step explanation: 5(4)-4(-2) which is 20+8 and that is 28.
HELP!!!!
Best answer gets brainliest.
Answer:
t-6=7 .................
Answer:
t - 6 = 7
Step-by-step explanation:
Identify the least common multiple of:
(x + 1), (x - 1), & (x^2 - 1)
Given:
The expressions are [tex](x+1),\ (x-1)[/tex] and [tex](x^2-1)[/tex].
To find:
The least common multiple of given expressions.
Solution:
The expressions are [tex](x+1),\ (x-1)[/tex] and [tex](x^2-1)[/tex]. The factor forms of these expressions are:
[tex](x+1)=1\times (x+1)[/tex]
[tex](x-1)=1\times (x-1)[/tex]
[tex](x^2-1)=(x-1)(x+1)[/tex] [tex][\because a^2-b^2=(a-b)(a+b)][/tex]
The least common multiple is the product of all distinct factors with its highest degree. So,
[tex]L.C.M.=1\times (x+1)\times (x-1)[/tex]
[tex]L.C.M.=(x+1)(x-1)[/tex]
[tex]L.C.M.=x^2-1^2[/tex] [tex][\because a^2-b^2=(a-b)(a+b)][/tex]
[tex]L.C.M.=x^2-1[/tex]
Therefore, the least common multiple of given expressions is [tex]x^2-1[/tex].
A side of the triangle below has been extended to form an exterior angle of 129°. Find the value of x.
129° + x = 180°. [Linear pair]
=> x = 180° - 129°
=> x = 51°