Answer:
2 m/s²
Explanation:
From the given information:
The first mass m_1 = 0.6 kg
The second mass m_2 = 0.3 kg
The magnitude for the acceleration of 0.3 kg is:
a = net force/ effective mass
Mathematically, it can be computed as follows:
[tex]a = \dfrac{F}{m}[/tex]
[tex]a = \dfrac{(m_2 +m_1 -m_1) }{(m_2+m_1+m_1)}(g)[/tex]
[tex]a = \dfrac{0.3 +0.6 -0.6}{(0.3 +0.6+0.6)}(9.8)[/tex]
a ≅ 2 m/s²
A basketball is picked up off the ground and carried to the top of a platform that is 160 feet up. It is then dropped to the ground. The ball rebounds one-half the height each time it hits the ground. What is the total vertical distance the ball will travel from the moment it is picked up to the moment it reaches its maximum height after the fourth bounce
Answer:
Explanation:
The total distance travelled by ball before first bounce
= 160 + 160 = 320 ft
Distance travelled between first bounce and second bounce
= 80 + 80 = 160 ft
Distance travelled between second bounce and third bounce
= 40 + 40 = 80 ft
Distance travelled between third bounce and fourth bounce
= 20 + 20 = 40 ft .
Distance travelled in fourth bounce = 10 ft
Total distance travelled = 320 + 160 + 80 + 40 + 10
= 610 ft .
A 4 kg object moving to the left collides with and sticks to a 3 kg object moving to the right. Which of the following is true of the motion of the combined objects immediately after the collision?
a. They must be moving to the left.
b. They must be moving to the right.
c. They must be at rest.
d. The motion cannot be determined without knowing the speeds of the objects before the collision.
Answer:
D. The motion cannot be determined without knowing the speeds of the objects before the collision.
Explanation:
This question is tricky! We know the object moving to the left has a greater mass than the one moving to the right. We'd assume they would move to the left because the leftwards object has a greater mass, right?
Not. So. Fast.
We can solve for the objects' final velocity using the formula for momentum, m₁v₁ + m₂v₂ = (m₁ + m₂)v .
Now here's where the trap is sprung: we don't think about the equation. This shows that the final velocity of the objects and the direction depends on both the mass of the objects and their initial velocity.
Basically, what if the 3 kg object is moving at 1 m/s and the 4 kg object is moving at –0.5 m/s? The objects would move to the right after the collision!
Do we know the velocity of these objects? No, right?
That means we can't determine the direction of their motion unless we know their initial, pre-collision velocity. This question is tricky because we look at the 4 kg vs. 3 kg and automatically assume the 4 kg object would dictate the direction of motion. That's not true. It depends on velocity as well.
I hope this helps you! Have a great day!
Two 13.0-cm-diameter electrodes 0.59 cm apart form a parallel-plate capacitor. The electrodes are attached by metal wires to the terminals of a 14 V battery. What is the charge on each electrode after insulating handles are used to pull the electrodes away from each other until they are 1.7 cm apart? The electrodes remain connected to the battery during this process. What is the electric field strength inside the capacitor after insulating handles are used to pull the electrodes away from each other until they are 1.7 cm apart? The electrodes remain connected to the battery during this process. What is the potential difference between the electrodes after insulating handles are used to pull the electrodes away from each other until they are 1.7 cm apart? The electrodes remain connected to the battery during this process.
Answer:
Explanation:
The capacitor is of parallel plate capacitor type
Capacitance C = ε₀ A / 4π d
ε₀ is 8.85 x 10⁻¹² , A is plate area and d is distance between plate .
d = 1.7 cm
C = 8.85 x 10⁻¹² x π x (6.5 x 10⁻² )² / 4π x 1.7 x 10⁻²
= 55 x 10⁻¹⁴F .
Charge on each electrode = C x V , V is voltage of battery .
= 55 x 10⁻¹⁴ x 14
= 770 x 10⁻¹⁴ C
Electric field strength = V / d where V is potential difference of battery , d is distance between plate .
= 14 / 1.7 x 10⁻²
= 8.23 x 10² V / m
The potential difference between plate
= potential difference of the battery
= 14 V .
Consider a simple pendulum consisting of a massive bob suspended from a fixed point by a string. Let T denote the time (the period of the pendulum) that it takes the bob to complete one cycle of oscillation (the time it takes for the pendulum to swing back and forth one time). How does the period of the swing of the simple pendulum depend on the quantities that define the pendulum and the quantities that determine the motion
Answer:
The period of the swing depends on only the length of the string and not on the mass of the bob and the period of the pendulum depends on only the horizontal component of g.
Explanation:
The period of the swing depends on only the length of the string and not on the mass of the bob. Since the length of the string and the mass of the bob define the pendulum.
Also, the properties that define the motion are the component of the weight of the bob in the horizontal direction which determines the to and fro movement of the bob. So, the period of the pendulum depends on only the horizontal component of g.
So, T = 2π√(l/g) where l = length of pendulum and g = acceleration due to gravity.
If 478 watts of power are used in 14 seconds,how much work was done
Answer:
6692J
Explanation:
Power is defined as the rate at which work is being done.
So,
Power = [tex]\frac{workdone}{time }[/tex]
Work done = Power x time
Given parameters:
Power = 478watts
Time = 14s
So;
Work done = 478 x 14 = 6692J
The chart below summarizes the forces applied to four different objects.
Which object will experience the greatest acceleration?
A. Z
B. X
C. Y
D. W
Answer:
C. Y
Explanation:
From Newton's second law of motion, we know that:
Force = mass x acceleration
So;
acceleration = [tex]\frac{Force }{mass}[/tex]
Therefore, to have the highest acceleration at a constant force, the mass must be low. Acceleration is inversely proportional to mass.
Y has the least mass and it will have the highest acceleration
The force of gravity acting on an object is directed through this
center of gravity and toward the center of the
Explanation:
Every object has a center of gravity. ... The force of gravity acting on an object is directed through this center of gravity and toward the center of the earth. The object's weight, W, can be represented by a vector directed down (along the line the object would fall if it were dropped).
It should be towards the center of the earth.
The following information should be considered:
Each and every object contains the center of gravity. The force of activity acted on an object that director via his gravity center & towards the center of the earth.Learn more: brainly.com/question/17429689
Claim:
Elements are pure substances made up of one type of atom,
and are written as their chemical
are pure substances made up of bonded elements, and are written as a
Explanation:
Elements are distinct substances that cannot be split-up into simpler substances. These substances consist of only one kind of atom.
There are over one hundred elements known to date. Each of these elements is usually symbolized by a capital letter or a capital letter followed by a small letter derived from English or Latin or Greek name of the element concerned.
Elements can be categorized in different ways.
Atoms are the smallest unit of elements that takes part in a chemical reaction.
2) Given R = 3 ohms and R, = 1 ohm and V = 12 volts
I
a) Find the total resistance.
b) Find the current in the circuit:
c) Find the voltage drop in each resistor:
Answer:
a) because this is in series, we have:
the total resistance is 3 + 1 = 4 (ohm)
b) the curren in the circuit is 12/4 = 3 (A)
c) the voltage in R = 3 ohm is 3.3 = 9 (V)
the voltage in R = 1 ohm is 12 - 9 = 3 (V)
Waves in the ocean are tearing apart the shoreline. Which of the following two Earth Systems are interacting with each other.
Answer:
the Indian Ocean on 26 December 2004. This event claimed 227,898 dead and missing from 14 countries. The difference in mortality rates between these tsunamis reflects, in part, the benefits of understanding how tsunami waves are generated and move, and educating citizens to make scientifically
sound and potentially life-saving decisions.
A tsunami is a series of rapidly propagating, shallow-water ocean waves that develops when a submarine earthquake, landslide, or volcanic eruption displaces a large volume of water. Powerful earthquakes, with magnitudes of 9 or greater, caused both the 2004 and 2011 tsunamis. The earthquakes resulted from the movement of large tectonic plates. The 11 March 2011 earthquake occurred at 32 km (20
mi.) deep in Earth’s crust about 130 km (81 mi.) east of the city of Sendai. This location is on the boundary between two tectonic plates—the Pacific plate to the east and North American plate to the west. This
boundary fractured, releasing energy that was transmitted through the rocks and elevated portions of the
ocean floor. This drastic movement transmitted energy to the overlying ocean water, which generated
tsunami waves that radiated outward. The waves washed over the nearby coastlines and were felt around
the globe within hours (Figure 1.1).
Explanation:
Answer:
I believe Geosphere (lithosphere) and Hydrosphere
Explanation:
I hope it's right if not please notify me.
The force of gravity acting on an object is directed through this
center of gravity and toward the center of the
Answer:
Earth.
Explanation:
Center of gravity can be defined as the specific point where all of the weight of an object is concentrated.
Generally, all the objects found around the world all have a center of gravity.
When an object is balanced so that a displacement lowers its center of gravity, the object is said to be in stable equilibrium.
Hence, the force of gravity acting on an object is directed through this center of gravity and toward the center of the earth.
Weight can be defined as the force acting on a body or an object as a result of gravity.
Mathematically, weight is given by the formula;
[tex] Weight, W = mg [/tex]
Where;
m is the mass of an object.
g is acceleration due to gravity.
Megan walks 1100\,\text m1100m1100, start text, m, end text to the left in 330\,\text s330s330, start text, s, end text. What was her average speed in \dfrac{\text m}{\text s} s m start fraction, start text, m, end text, divided by, start text, s, end text, end fraction?
Answer:
v = 3.34 m/s
Explanation:
Given that,
Distance, d = 1100 m
Time, t = 330 s
We need to find the average speed of the Megan. It is equal to the total distance divided by total time taken.
[tex]v=\dfrac{1100\ m}{330\ s}\\\\v=3.34\ m/s[/tex]
So, the average speed of Megan is 3.34 m/s.
Answer:
33.3
Explanation:
In the picture shown below A represents a characteristic of only geocentric model, B represents a characteristic common to both geocentric and heliocentric models, C represents a characteristic of only heliocentric model, and D represents a characteristic which the geocentric and heliocentric models do not have.
Under which label will the characteristic, "The sun and planets revolve around a central moon in the solar system" fall?
A
B
C
D
A basketball of mass 0.23kg is thrown horizontally against a rigid vertical wall with a velocity of 20m/s. It rebounds with a velocity of 15m/s. Calculate the impulse of the force of the wall on the basketball.
Answer:
[tex]8.1\:\mathrm{Ns}[/tex]
Explanation:
The impulse-momentum theorem gives the impulse on an object to be equal to the change in momentum of that object. Since mass is maintained, the change in momentum of the basketball is:
[tex]\Delta p = m\Delta v[/tex], where [tex]m[/tex] is the mass of the basketball and [tex]\Delta v[/tex] is the change in velocity.
Since the basketball is changing direction, its total change in velocity is:
[tex]\Delta v = 20-(-15)=35\:\mathrm{m/s}[/tex].
Therefore, the basketball's change in momentum is:
[tex]\Delta p = m\Delta v = 0.23\cdot 35= 8.05=8.1\:\mathrm{kg\cdot m/s}[/tex].
Thus, the impulse on the basketball is [tex]\fbox{$8.1\:\mathrm{Ns}$}[/tex] (two significant figures).
Cecily is inflating her bicycle tyre with the pump below. When she pushes the plunger down, it is doing work against the gas. This means that the plunger is transferring what to the gas particles?
The plunger is transferring energy to the gas particles.
What the plunger is transferring to the gas particles?When Cecily is applying pressure to the plunger, the gas inside is being compressed, and the speed of gas molecules increases.
When these air molecules enter the tire, adiabatically, the temperature of the gas rises.
It happens due to an increase in the average kinetic energy of the gas particles.
Thus, the gas particles receive energy from the plunger.
Learn more about the plunger, here:
https://brainly.com/question/4190018
explain with one example that different types of organisums live in one habitation
Answer:
When you look at a simple koi pond you can find Koi (the secondary consumer) that feeds off of the zooplankton (first consumer), they eat the phytoplankton (producers). All in a simple food chain
Explanation:
Basically, Koi eat the little animal plankton (zooplankton) that then eats the plant plankton (phytoplankton) that can only end when a part of that habitat is removed. If you got rid of the plant plankton then the whole chain would collapse and most likely die.
A beaker with water resting on a scale weighs 40 N. A block
suspended on a hanging spring weighs 20 N. The spring scale
reads 15 N when a block is fully submerged in the water. What is
the reading of a scale on which the beaker with water rests, while
the block is submerged in the water after detached from the
hanging spring?
A. 25 N B. 60 N C. 55 N D. 45 N
Answer:
D. 45 N
Explanation:
The weight of the block is 20 N, when the block is fully immerged in water, it weighs 15 N. Hence the loss of weight = 20 N - 15 N = 5 N.
The loss of weight is as a result of the buoyant force. The buoyant force is the upward force exerted by a fluid when an object is fully or partially immersed in a fluid.
The buoyant force of 5 N acts in the upward direction, the weight of the beaker that would be read by the scale when the beaker is immersed in water = 40 N + 5 N = 45 N
A block of mass m = 4.4 kg slides from left to right across a frictionless surface with a speed vi= 8.4 m/s It collides in a perfectly elastic collision with a second block of mass M that is at rest. After the collision, the 4.4-kg block reverses direction, and its new speed is 2.5 m/s What is V, the speed of the second block after the collision?
Answer:
[tex]v_{2'}=8.1\:\mathrm{m/s}[/tex]
Explanation:
In a perfectly elastic collision, the total kinetic energy of the system is maintained. Therefore, we can set up the following equation:
[tex]\frac{1}{2}m_1{v_1}^2+\frac{1}{2}m_2{v_2}^2=\frac{1}{2}m_1{v_{1'}}^2+\frac{1}{2}m_2{v_{2'}}^2[/tex]
Since the second block was initially at rest, [tex]\frac{1}{2}m_2{v_2}^2=0[/tex].
Plugging in all given values, we have:
[tex]\frac{1}{2}m_1{v_1}^2=\frac{1}{2}m_1{v_{1'}}^2+\frac{1}{2}m_2{v_{2'}}^2,\\\\\frac{1}{2}\cdot4.4\cdot8.4^2=\frac{1}{2}\cdot 4.4 \cdot (-2.5)^2+\frac{1}{2}\cdot 4.4\cdot {v_{2'}}^2,\\\\{v_{2'}}=\sqrt{64.31},\\\\{v_{2'}}\approx\fbox{$8.1\:\mathrm{m/s}$}[/tex]..
a student lifts a 15N mass through a distance of 1.5m. whats the works done ?
Answer:
10N/m
Explanation:
Calculating workdone=Force/Distance
Therefore=15N/1.5m
=10N/m
If the force of gravity suddenly stopped acting on planets, they would
A.) spiral slowly towards the sun
B.) continue to orbit the sun
C.) move in straight lines tangent to thier orbits
D.) spiral slowly away from the sun
E.) fly straight away from the sun
Learning task 2: Using the information you gathered from Learning Task 1, make a concept web of the contributions of the following scientist in the DEVELOPMENT OF MAGNETIC THEORY
A. Andre- Marie Ampere
B. Michael Faraday
C. Heinrich Herts
D. James Clerk Maxwell
E. Hans Christian Oersted
Answer:
The contributions of the following scientist in the DEVELOPMENT OF MAGNETIC THEORY
James Clerk Maxwell Hans Christian OerstedExplanation:
George Green was the first personality to formulate a mathematical principle of magnetism and electricity and his system created the framework for the work of different scientists such as William Thomson, James Clerk Maxwell, and others. Magnetism is the power exercised by magnets when they drag or deflect each other. Magnetism is produced by the movement of electric charges.
The contributions of James Clerk Maxwell and Hans Christian Oersted, et al in the DEVELOPMENT OF MAGNETIC THEORY are as follows:
They discovered that the speed at which electromagnetic waves traveled was similar to that of lightThey proved that there was a proportional connection between electricity and magnetismAccording to the given question, we are asked to show the contributions which the aforementioned scientists had in the development of the magnetic theory.
As a result of this, we can see that James Maxwell first developed this theory in the nineteenth century and the theory was modified by other scientists who made the framework for the electrical system and magnetism.
Read more here:
https://brainly.com/question/17913237
Why can ultraviolet waves be dangerous
Answer:
They can cause sunburn. Exposure to UV rays can cause premature aging of the skin and signs of sun damage such as wrinkles, leathery skin, liver spots, actinic keratosis, and solar elastosis. UV rays can also cause eye problems.
Explanation:
You are standing next to a table and looking down on a record player sitting on the table. Take the spindle (axis of rotation) to be the center of your coordinate system and the y axis to be perpendicular to the side of the player you are standing next to. Long-playing records revolve 33(1/3) times per minute. You put a small blob of clay at the edge of a record that has a radius of 0.15 m, positioning the clay such that it is at its greatest value of y at t = 0.
Equation of motion for the y component of the clay's position: y(t)=Asin(ωt+ϕi)
Required:
a. What is the rotational speed of the clay?
b. Determine the value of A in the equation of motion.
c. Determine the value of ϕi in the equation of motion. Suppose that −π<ϕi≤π
Answer:
a) the rotational speed of the clay is 3.45 rad/s
b) the value of A in the equation of motion is 0.15 m
c) the value of ϕi is 90° or π/2 rad.
Explanation:
Given that;
Revolution per minute rpm = 33( 1/3) = 100/3
The frequency f = 100 / 3(60) = 0.55 Hz
a)
Rotational speed W = 2πf
we substitute
W = 2π × 0.55
W = 3.45 rad/s
Therefore, the rotational speed of the clay is 3.45 rad/s
b)
given equation; y(t)=Asin(ωt+ϕi)
given that radius = 0.15 m
y(t)=(0.2)sin(ωt+ϕi)
Therefore, the value of A in the equation of motion is 0.15 m
c)
since y(t) has the maximum value at t =0
so at t=0
y(0) = (0.15)sin(ω(0)+ϕi)
= 0.15sin(ϕi)
this will give maximum value when ϕi = 90°
so
y(0) = (0.15)sin(ω(0)+ϕi)
= 0.15sin(90°)
= 0.15
hence, the value of ϕi is 90° or π/2 rad.
I WILL GIVE YOU BRAINLIEST! PLEASE HELP
A daydreaming soccer player takes a 0.47 kg ball to the face experiencing an impact force of 1060.9 N. If the ball hit the
player's face with a speed of 14.5 m/s and bounces off in the opposite direction with the same speed, calculate the time of
impact. Note: The time of impact will be a fraction of a second so answer with at least 5 decimal places
Answer:
0.00547s
Explanation:
Step one:
given data
mass= 0.4kg
force= 1060.9N
velocity = 14.5m/s
Frome
Ft= mv
substitute
t= mv/F
t=0.4*14.5/1060.9
t=5.8/1060.9
t=0.00547s
Small household electrical devices, such as vacuum cleaners, televisions, and floor lamps, each draw a different amount of current, but all require 120 volts to operate. Are the outlets in of a power-strip, then, wired in series or parallel
Answer:
the selected configuration is PARALLEL
Explanation:
There are two ways to connect electrical circuits.
In series in this type of circuit the equipment is connected to the same line, in this case the current of the circuit circulates through all the inputs is the same, but the voltage in each one is a part of the total voltage, this circuit has the problem that if an appliance is disconnected or damages the power and the entire circuit is interrupted
V_total = ∑ V_i
In a parallel circuit the equipment is connected in two two cables, for which the current is divided in each branch, the voltage in all the branches is the same, this type of circuit has the advantage that if one equipment is damaged or disconnects the others they can continue working
V_total = V
Therefore, in consequence of the above, the selected configuration is PARALLEL
How is the Moon thought to have formed
•What is the gravitational potential energy of a girl
who has a mass of 40 kg and is standing on the
edge of a diving board that is 5 m above the water?
Answer:
1960 joule
Explanation:
. What is the atomic number for calcium?
at what speed does the kg ball move ?
Answer: Choice A) 2 meters per second
=======================================================
Explanation:
The smaller ball has momentum of
p = m*v
p = (1 kg)*(4 m/s)
p = 4 kg*m/s
All of this momentum transfers into the larger ball because the smaller ball comes to a complete stop.
For the larger ball, we have p = 4 and m = 2. Let's find v.
p = m*v
4 = 2*v
4/2 = v
2 = v
v = 2 m/s which is why the answer is choice A
The larger ball moves at a speed of 2 meters per second. The speed is cut in half compared to the smaller ball because the larger ball has more inertia (aka more mass), and therefore it takes more energy to move it. If you apply the same energy to each, then the smaller object moves faster.
Kiara starts at 4, walks 6 blocks left and 2 blocks right. What is her displacement?